Monday, August 27, 2018

Single Variable Calculus, Chapter 5, 5.2, Section 5.2, Problem 22

Evaluate $\displaystyle \int^4_1 \left( x^2 + 2x - 5 \right) dx$ using the form of the definition of the intergral $\displaystyle \int^b_a f(x) dx = \lim_{n \to \infty} \sum\limits_{i = 1}^n f(x_i) \Delta x$

$
\begin{equation}
\begin{aligned}
\Delta x &= \frac{b-a}{n} \\
\\
\Delta x &= \frac{4-1}{n} \\
\\
\Delta x &= \frac{3}{n}\\
\\
x_i &= a+ i \Delta x\\
\\
x_i &= 1 + \frac{3i}{n}
\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n f \left( 1 + \frac{3i}{n} \right) \left( \frac{3}{n} \right)\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \left[ \left( 1 + \frac{3i}{n}\right)^2 + 2\left( 1 + \frac{3i}{n}\right) - 5 \right] \left( \frac{3}{n} \right)\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \left( 1 + \frac{6i}{n} + \frac{9i^2}{n^2} + 2 + \frac{6i}{n} - 5 \right) \left( \frac{3}{n} \right)\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \left( \frac{9i^2}{n^2} + \frac{12i}{n} - 2 \right) \left( \frac{3}{n} \right)\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \left( \frac{27i^2}{n^3} + \frac{36i}{n^2} - \frac{6}{n} \right)
\end{aligned}
\end{equation}
$


Evaluate the summation

$
\begin{equation}
\begin{aligned}
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \frac{27i^2}{n^3} + \sum\limits_{i = 1}^n \frac{36 i }{n^2} - \sum\limits_{i = 1}^n \frac{6}{n}\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \frac{27}{n^3} \sum\limits_{i = 1}^n + \frac{36}{n^2} \sum\limits_{i = 1}^n i - \frac{1}{n} \sum\limits_{i = 1}^n 6\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \frac{27}{n^3} \left( \frac{n(n+1)(2n+1)}{6} \right) + \frac{36}{n^2} \left( \frac{n(n+1)}{2} \right) - \frac{1}{n} (6n)\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \frac{9(n+1)(2n+1)}{2n^2} + \frac{18(n+1)}{n} - 6 \\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \frac{18n^2 + 27 n + 9}{2n^2} + \frac{18n + 18}{n} -6 \\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \frac{18n^2 + 27n + 9 + 36n^2 + 36n - 12n^2}{2n^2}\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \frac{42n^2 + 63n + 9}{2n^2}
\end{aligned}
\end{equation}
$

Evaluating the limit


$
\begin{equation}
\begin{aligned}
\int^4_1 \left( x^2 + 2x - 5 \right) dx &= \lim_{n \to \infty} \sum\limits_{i = 1}^n f(x_i) \Delta x\\
\\
\int^4_1 \left( x^2 + 2x - 5 \right) dx &= \lim_{n \to \infty} \left( \frac{42n^2 + 63n + 9}{2n^2} \right)\\
\\
\int^4_1 \left( x^2 + 2x - 5 \right) dx &= \lim_{n \to \infty} \left( \frac{\frac{42\cancel{n^2}}{\cancel{n^2}} + \frac{63n}{n^2} + \frac{9}{n^2}}{\frac{2\cancel{n^2}}{\cancel{n^2}}} \right)\\
\\
\int^4_1 \left( x^2 + 2x - 5 \right) dx &= \lim_{n \to \infty} \left( \frac{42 + \frac{63}{n} + \frac{9}{n^2} }{2} \right)\\
\\
\int^4_1 \left( x^2 + 2x - 5 \right) dx &= \frac{42 + \lim\limits_{n \to \infty}\frac{63}{n} + \lim\limits_{n \to \infty} \frac{9}{n^2} }{2}\\
\\
\int^4_1 \left( x^2 + 2x - 5 \right) dx &= \frac{42+0+0}{2}\\
\\
\int^4_1 \left( x^2 + 2x - 5 \right) dx &= \frac{42}{2}\\
\\
\int^4_1 \left( x^2 + 2x - 5 \right) dx &= 21
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...