Wednesday, August 8, 2018

Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 35

We need to find (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$, and (d) $g \circ g$ and state their domains


$\displaystyle f(x) = x + \frac{1}{x} , \qquad \quad g(x) = \frac{x+1}{x+2} $


$
\begin{equation}
\begin{aligned}
\text{(a)} \qquad \quad f \circ g &= f(g(x)) \\

\displaystyle f \left(\frac{x+1}{x+2}\right) &= x + \frac{1}{x}
&& \text{ Substitute the given function $g(x)$ to the value of $x$ of the function $f(x)$}\\

\displaystyle f \left(\frac{x+1}{x+2}\right) &= \frac{x+1}{x+2}+ \frac{1}{\frac{x+1}{x+2}}
&& \text{ Simplify the equation }\\

\displaystyle f \left(\frac{x+1}{x+2}\right) &= \frac{x+1}{x+2} + \frac{x+2}{x+1}
&& \text{ Get the LCD}\\

\displaystyle f \left(\frac{x+1}{x+2}\right) &= \frac{(x+1)^2+(x+2)^2}{(x+2)(x+1)}
&& \text{ Expand the equation that has an exponent}\\

\displaystyle f \left(\frac{x+1}{x+2}\right) &= \frac{x^2+2x+1+x^2+4x+4}{(x+2)(x+1)}
&& \text{ Combine like terms}

\end{aligned}
\end{equation}
$


$ \boxed{\displaystyle f \circ g = \frac{2x^2+6x+5}{(x+2)(x+1)}} $


$\boxed{ \text{ The domain of this function is } (-\infty,-2) \bigcup (-2,-1,)\bigcup (-1,\infty)} $



$
\begin{equation}
\begin{aligned}
\text{(b)} \qquad \quad g \circ f &= g(f(x)) \\

\displaystyle g\left(x+\frac{1}{x}\right) &= \frac{x+1}{x+2}
&& \text{ Substitute the given function $g(x)$ to the value of $x$ of the function $f(x)$}\\

\displaystyle g\left(x+\frac{1}{x}\right) &= \frac{x+\frac{1}{x}+1}{x+\frac{1}{x}+2}
&& \text{ Get the LCD of the numerator and the denominator} \\

\displaystyle g\left(x+\frac{1}{x}\right) &= \frac{\frac{x^2+1+x}{\cancel{x}}}{\frac{x^2+1+2x}{\cancel{x}}}
&& \text{ Cancel out like terms}

\end{aligned}
\end{equation}
$


$\boxed{\displaystyle g \circ f = \frac{x^2+x+1}{x^2+2x+1}} $

To get the domain of the given function, we need to get the factor of the denominator. So we have

$\displaystyle g \circ f = \frac{x^2 + x + 1}{(x + 1)^2}$

$ \boxed{ \text{ Therefore the domain of this function is }(-\infty, -1) \bigcup(-1,\infty)} $



$
\begin{equation}
\begin{aligned}
\text{(c)} \qquad \quad f \circ f &= f(f(x)) \\

\displaystyle f\left(x + \frac{1}{x}\right) &= x + \frac{1}{x}
&& \text{ Substitute the given function $g(x)$ to the value of $x$ of the function $f(x)$}\\

\displaystyle f\left(x + \frac{1}{x}\right) &= x + \frac{1}{x} + \frac{1}{x+ \frac{1}{x}}
&& \text{ Get the LCD of the last term, then simplify}\\

\displaystyle f\left( \displaystyle x + \frac{1}{x}\right) &= x+\frac{1}{x}+ \frac{x}{x^2+1}
&& \text{ Get the LCD of the equation} \\

\displaystyle f\left( \displaystyle x + \frac{1}{x}\right) &= \frac{x^2(x^2+1)+(x^2+1)+x^2}{x(x^2+1)}
&& \text{Simplify the equation}\\


\displaystyle f\left( \displaystyle x + \frac{1}{x}\right) & =\frac{x^4+x^2+x^2+x^2 + 1}{x^3+x}
&& \text{Combine like terms}

\end{aligned}
\end{equation}
$


$ \boxed{\displaystyle f \circ f = \frac{x^4+3x^2+1}{x^3+x}} $


$ \boxed{ \text{ The domain of this function is } (-\infty,0)\bigcup(0,\infty)} $





$
\begin{equation}
\begin{aligned}
\text{(d)} \qquad \quad g \circ g &= g(g(x)) \\

\displaystyle g \left( \displaystyle \frac{x+1}{x+2}\right) &= \displaystyle \frac{x+1}{x+2}
&& \text{ Substitute the given function $g(x)$ to the value of $x$ of the function $f(x)$}\\

\displaystyle g \left(\displaystyle \frac{x+1}{x+2}\right) &= \displaystyle \frac{\displaystyle \frac{x+1}{x+2}+1}{\displaystyle \frac{x+1}{x+2}+2}
&& \text{Get the LCD of the numerator and the denominator}\\

\displaystyle g \left(\displaystyle \frac{x+1}{x+2}\right) &= \displaystyle \frac{\displaystyle \frac{x+1+x+2}{\cancel{x+2}}}{\displaystyle \frac{x+1+2(x+2)}{\cancel{x+2}}}
&& \text {Cancel out like terms, then simplify}

\end{aligned}
\end{equation}
$


$ \boxed{\displaystyle g \circ g = \frac{2x+3}{3x+5}} $


$\boxed{ \text{ The domain of this function is } (-\infty, \frac{-5}{3}) \bigcup (\frac{-5}{3}, \infty)}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...