Friday, November 25, 2011

College Algebra, Chapter 3, 3.1, Section 3.1, Problem 38

Given the function $\displaystyle f(x) = \frac{1}{x+1}$. Find $f(a)$, $f(a+h)$ and the difference quotient $\displaystyle \frac{f(a+h) - f(a)}{h}$ where $h \neq 0$

For $f(a)$
$\displaystyle f(a) = \frac{1}{a+1}$ Replace $x$ by $a$

For $f(a+h)$
$\displaystyle f(a+h) = \frac{1}{a+h+1}$ Replace $x$ by $(a+h)$

For $\displaystyle \frac{f(a+h)-f(a)}{h}$

$
\begin{equation}
\begin{aligned}
\frac{f(a-h)-f(a)}{h} &= \frac{\frac{1}{a+h+1} - \frac{1}{a+h} }{h} && \text{Substitute } f(a+h) = \frac{1}{a+h+1} \text{ and } f(a) = \frac{1}{a+h}\\
\\
&= \frac{a+h-(a+h+1)}{h(a+h)(a+h+1)} && \text{Get the LCD}\\
\\
&= \frac{a+h-a-h-1}{h(a+h)(a+h+1)} && \text{Simplify}\\
\\
&= \frac{-1}{h(a+h)(a+h+1)}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...