Friday, November 18, 2011

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 34

Determine the points on the curve $\displaystyle y = \frac{\cos x}{2 + \sin x}$ at which the tangent is horizontal.


$
\begin{equation}
\begin{aligned}

y' =& \frac{\displaystyle (2 + \sin x) \frac{d}{dx} (\cos x) - \left[ (\cos x) \frac{d}{dx} (2 + \sin x) \right] }{(2 + \sin x)^2}
&& \text{Apply Quotient Rule}
\\
\\
y' =& \frac{(2 + \sin x)(- \sin x) - (\cos x) (0 + \cos x)}{(2 + \sin x)^2}
&& \text{Expand the equation}
\\
\\
y' =& \frac{-2 \sin x - \sin ^2 x - \cos^2 x}{4 + 2 \sin x + \sin^2 x}
&& \text{Group the $(- \sin^2 x - \cos^2 x)$ terms together and factor out the negative sign.}
\\
\\
y' =& \frac{-2 \sin x - (\sin ^2 x + \cos^2 x)}{4 + 2 \sin x + \sin^2 x}
&& \text{Apply Pythagorean Identity, $\sin ^2 x + \cos^2 x = 1$}
\\
\\
y' =& \frac{-2 \sin x - 1}{4 + 2 \sin x + \sin^2 x}
&& \text{Since the slope is horizontal so the slope of the tangent line is zero. Let $y' = m_T$(slope of the tangent line)}
\\
\\
0 =& \frac{-2 \sin x - 1}{4 + 2 \sin x + \sin ^2 x}
&& \text{Multiply both sides by $(4 + 2 \sin x + \sin^2 x)$}
\\
\\
-2 \sin x - 1 =& 0
&& \text{Add 1 to both sides}
\\
\\
-2 \sin x =& 1
&& \text{Divide both sides by -2}
\\
\\
\sin x =& \frac{-1}{2}


\end{aligned}
\end{equation}
$



By using the unit circle diagram, we can determine what angles(s) has $\displaystyle \frac{-1}{2}$ on $y$-coordinate, so


$
\begin{equation}
\begin{aligned}

x =& \sin^- \left[ \frac{-1}{2} \right]
\\
\\
x =& \frac{7 \pi}{6} \text{ and } x = \frac{11 \pi}{6}

\end{aligned}
\end{equation}
$


Also, recall that sine function has repeating cycles every period of $2 \pi$, so the answer is

$\displaystyle x = \frac{7 \pi}{6} + 2 \pi (n)$ and $\displaystyle x = \frac{11 \pi}{6} + 2 \pi (n)$ where $n$ is any integer and $2 \pi$ corresponds to the repeating period.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...