Friday, November 18, 2011

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 4

Expand the quantity $\ln \frac{3x^2}{(x + 1)^5}$ by using the Laws of Logarithm.


$
\begin{equation}
\begin{aligned}

\ln \frac{3x^2}{(x + 1)^5} =& \ln 3x^2 - \ln (x + 1)^5
&& \text{(recall that } \ln \frac{x}{y} = \ln x - \ln y)
\\
\\
\ln \frac{3x^2}{(x + 1)^5} =& \ln 3x^2 - 5 \ln (x + 1)
&& \text{(recall that } \ln (x)^k = k \ln x)
\\
\\
\ln \frac{3x^2}{(x + 1)^5} =& \ln (3) + \ln (x^2) - 5 \ln (x + 1)
&& \text{(recall that } \ln (xY) = \ln x + \ln y)
\\
\\
\ln \frac{3x^2}{(x + 1)^5} =& \ln (3) + 2 \ln x - 5 \ln (x + 1)
&& \text{(recall that } \ln (x)^k = k \ln x


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...