Monday, November 28, 2011

Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 64

Find the integral $\displaystyle \int^1_0 \frac{1}{\sqrt{16 t^2 + 1}} dt$

If we let $u = 4t$, then $du = 4dt$, so $\displaystyle dt = \frac{du}{4}$. We know that the anti-derivative of $\displaystyle \frac{1}{\sqrt{u^2 + 1}}$ is $\sin h^{-1} x$. When $x = 0, u = 0$ and when $x = 1, u = 4$. Therefore,


$
\begin{equation}
\begin{aligned}

\int^1_0 \frac{1}{\sqrt{16 t^2 + 1}} dt =& \int^4_0 \frac{1}{\sqrt{u^2 + 1}} \cdot \frac{du}{4}
\\
\\
\int^1_0 \frac{1}{\sqrt{16 t^2 + 1}} dt =& \frac{1}{4} \int^4_0 \frac{1}{\sqrt{u^2 + 1}} du
\\
\\
\int^1_0 \frac{1}{\sqrt{16 t^2 + 1}} dt =& \frac{1}{4} [\sin h^{-1} u]^4_0
\\
\\
\int^1_0 \frac{1}{\sqrt{16 t^2 + 1}} dt =& \frac{1}{4} [\ln (u + \sqrt{u^2 + 1})]^4_0
\\
\\
\int^1_0 \frac{1}{\sqrt{16 t^2 + 1}} dt =& \frac{1}{4} \left[ \ln (4 + \sqrt{(4)^2 + 1}) - \ln (0 + \sqrt{(0)^2 + 1}) \right]
\\
\\
\int^1_0 \frac{1}{\sqrt{16 t^2 + 1}} dt =& \frac{1}{4} [\ln (4 + \sqrt{17}) - \ln (\sqrt{1})]
\\
\\
\int^1_0 \frac{1}{\sqrt{16 t^2 + 1}} dt =& \frac{1}{4} [\ln (4 + \sqrt{17}) - \ln (1)]
\\
\\
\int^1_0 \frac{1}{\sqrt{16 t^2 + 1}} dt =& \frac{1}{4} [\ln (4 + \sqrt{17}) - 0]
\\
\\
\int^1_0 \frac{1}{\sqrt{16 t^2 + 1}} dt =& \frac{1}{4} \ln ( 4 + \sqrt{17})
\\
\\
& \text{or}
\\
\\
\int^1_0 \frac{1}{\sqrt{16 t^2 + 1}} dt =& \frac{\ln (4 + \sqrt{17})}{4}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...