Wednesday, July 18, 2012

Calculus of a Single Variable, Chapter 4, 4.1, Section 4.1, Problem 27

int(1-csc(t)cot(t)dt
=intcotdt-intcsc(t)cot(t)dt
=int(cos(t)/sin(t))dt-int(1/sin(t)(cos(t)/sin(t))dt
=intcos(t)/sin(t)dt-intcos(t)/(sin^2(t))dt
Now,
intcos(t)/sin(t)dt
let x=sin(t)
dx=cos(t)dt
intdx/x
=ln(x)
=ln(sin(t)
intcos(t)/(sin^2(t))dt
Let sin(t)=y
dy=cos(t)dt
=int(1/y2)dy
=y^(-2+1)/(-2+1)
=-1/y
=-1/sin(t)
:.int(1-csc(t)cot(t)dt=ln(sin(t))-(-1/sin(t))+C
C is a constant
=ln(sin(t))+1/sin(t)+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...