Monday, July 16, 2012

Calculus of a Single Variable, Chapter 8, 8.2, Section 8.2, Problem 11

Given
int x(e^(-4x)) dx
by applying integration by parts, we'll get the answer
let u=x => u'= 1
v'=e^(-4x) so , v= -1/4e^(-4x)
Now by integration by parts ,
int uv' dx = uv - int u'v dx
so ,
int xe^(-4x) dx = -x/4e^(-4x) -int (1) -1/4e^(-4x) dx
=-x/4e^(-4x) +1/4int e^(-4x) dx
=-x/4e^(-4x) +1/4 int e^(-4x) dx
let us find
int e^(-4x) dx
let u= -4x
du = -4dx so dx = -1/4du
so,
int e^(-4x) dx= int e^(u) -1/4du
=-1/4int e^u du
=-1/4e^u = -1/4e^(-4x)
so, now
int xe^(-4x) dx = -x/4e^(-4x) +1/4int e^(-4x) dx
=-x/4e^(-4x) +1/4 (-1/4)e^(-4x)
=-x/4e^(-4x) -1/16e^(-4x) +C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...