Wednesday, October 31, 2012

Calculus and Its Applications, Chapter 1, 1.4, Section 1.4, Problem 38

Determine the $f'(x)$ of the function $\displaystyle f(x) = \frac{2x }{x + 1}$

$
\begin{equation}
\begin{aligned}
\frac{f(x + h) - f(x)}{h} &= \frac{\left[ \frac{2(x + 1)}{(x + h) + 1} \right] - \left[ \frac{2x}{(x + 1)} \right]}{h}\\
\\
&= \frac{\frac{2(x + h)(x + 1) - 2x (x + h + 1)}{(x + 1)(x + h + 1)}}{h}
&& \text{Get the LCD}\\
\\
&= \frac{2x^2 + 2x + 2xh + 2h - 2x^2 - 2xh - 2x}{h(x + 1)(x + h + 1)}\\
\\
&= \frac{2h}{h(x + 1)(x + h + 1)}\\
\\
&= \frac{2}{x^2 + xh + x + x + h + 1}\\
\\
&= \frac{2}{x^2 + xh + 2x + h + 1}
\end{aligned}
\end{equation}
$

Thus,

$
\begin{equation}
\begin{aligned}
f'(x) = \lim_{h \to 0} \frac{ f(x + h) - f(x) }{h} &= \frac{2}{x^2 + x(0) + 2x + 0 + 1}\\
\\
&= \frac{2}{x^2 + 2x + 1} \text{ or } \frac{2}{( x + 1)^2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...