Friday, October 26, 2012

Use the disk method to verify that the volume of a right circular cone is 1/3 *pir^2h where r is the radius of the base and h is the height.

To verify the volume of a right circular cone, we consider the radius of the base (r) as an interval along the x-axis  and height (h) as an interval along the y-axis. As shown in the attached image, a red line revolves about the y-axis to form a right circular cone. For the equation of the red line, we consider the points: (0,h) and (r,0) where:  x_1= 0 , y_1=h , x_2=r , and y_2=0 .
 
The point (0,h) is a y-intercept point therefore  it follows  (0,b) then  b =h in y=mx+b .
To solve for m, we follow m = ((y_2-y_1))/((x_2-x_1)) .
m= ((0-h))/((r-0)) = -h/r
Then  plug-in m= -h/r and b = h, we get the equation of the red line as: y =-h/rx+h .
This can be rearrange into x = -(y-h)*r/h   or   x= ((h-y)r)/h .
Using the Disk Method, we consider a rectangular strip perpendicular to the axis of revolution.
For a horizontal rectangular strip with a thickness of "dy", we follow the formula for Disk Method as: V = int_a^b pi r^2 dy .
 To determine the r, we consider the length of the rectangular strip = x_2-x_1 .
Then, r= ((h-y)r)/h - 0 = ((h-y)r)/h  .
Boundary values of y: a=0 to b=h .
Plug-in the values on  the formula: V = int_a^b pi r^2 dy , we get:
V = int_0^h pi (((h-y)r)/h)^2 dy
V = int_0^h pi (r^2/h^2)*(h-y)^2dy
Apply basic integration property: int c*f(y) dy = c int f(y) dy .
V =( pir^2)/h^2 int_0^h (h-y)^2 dy
To find the indefinite integral, we may apply u-substitution by letting u = h-y then du = -dy or (-1)du = dy .
V =( pir^2)/h^2 int (u)^2 *(-1)du
V =( -pir^2)/h^2 int (u)^2 du
Apply Power rule for integration: int y^n dy= y^(n+1)/(n+1) .
V =( -pir^2)/h^2* u^(2+1)/(2+1)
V =( (-pir^2)/h^2)* u^3/3
Plug-in y = h-y  on (( pir^2)/h^2)* u^3/3 , we get:
V =(( -pir^2)/h^2)* (h-y)^3/3|_0^h
Apply definite integration formula: int_a^b f(y) dy= F(b)-F(a) .
V =((- pir^2)/h^2)* (h-h)^3/3-((- pir^2)/h^2)* (h-0)^3/3
V =(( -pir^2)/h^2)* (0)^3/3-(( -pir^2)/h^2)* (h)^3/3
V =0 -(( -pih^3r^2)/(3h^2))
V = 0 +(pih^3r^2)/(3h^2)
V =(pih^3r^2)/(3h^2)
V = (pihr^2)/3 or 1/3pir^2h
 
Note: Recall the Law of Exponent: y^n/y^m= y^((n-m))
then h^3/h^2= h^((3-2)) = h^ 1 or h .
 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...