Thursday, October 25, 2012

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 34

Find all real solutions of the equation $\displaystyle x + 2 \sqrt{x - 7} = 10$


$
\begin{equation}
\begin{aligned}

x + 2 \sqrt{x - 7} =& 10
&& \text{Given}
\\
\\
2 \sqrt{x - 7} =& 10 - x
&& \text{Subtract } x
\\
\\
(2 \sqrt{x - 7})^2 =& (10 - x)^2
&& \text{Square both sides}
\\
\\
4(x - 7) =& 100 - 20x + x^2
&& \text{Use FOIL method}
\\
\\
4x - 28 =& 100 - 20x + x^2
&& \text{Combine like terms}
\\
\\
x^2 - 24x + 128 =& 0
&& \text{Factor out}
\\
\\
(x - 8)(x - 16) =& 0
&& \text{Zero Product Property}
\\
\\
x - 8 =& 0 \text{ and } x - 16 = 0
&& \text{Solve for } x
\\
\\
x =& 8 \text{ and } x = 16
&&
\\
\\
x =& 8
&& \text{The only solution that satisfy the equation } x + 2 \sqrt{x - 7} = 10

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...