Sunday, October 21, 2012

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 11

Differentiate $\displaystyle f(\theta) \frac{\sec \theta}{1 + \sec \theta} $


$
\begin{equation}
\begin{aligned}

f'(\theta) =& \frac{(1 + \sec \theta) \frac{d}{d\theta} (\sec \theta) - \left[ (\sec \theta) \frac{d}{d\theta} (1 + \sec \theta) \right]}{(1 + \sec \theta)^2}
&& \text{Using Quotient Rule}
\\
\\
f'(\theta) =& \frac{(1 + \sec \theta) (\sec \theta \tan \theta) - (\sec \theta) (\sec \theta \tan \theta) }{(1 + \sec \theta)^2}
&& \text{Simplify the equation}
\\
\\
f'(\theta) =& \frac{\sec \theta \tan \theta + \cancel{\sec^2 \theta \tan \theta} -\cancel{\sec^2 \theta \tan \theta} }{(1 + \sec \theta)^2}
&& \text{Combine like terms}
\\
\\
f'(\theta) =& \frac{\sec \theta \tan \theta}{(1 + \sec \theta)^2}
&& \text{}
\\
\\

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...