Show that the formulas for the derivatives of the functions a.) $\cos hx$, b.) $\tan hx$, c.) $\csc hx$ ,d.) $\sec hx$ and e.) $\cot hx$
a.) $\cos hx$
$
\begin{equation}
\begin{aligned}
\cos hx =& \frac{e^x + e^{-x}}{2}
\\
\\
\frac{d}{dx} (\cos hx) =& \frac{d}{dx} \left( \frac{e^x + e^{-x}}{2} \right)
\\
\\
\frac{d}{dx} (\cos hx) =& \frac{\displaystyle (2) \frac{d}{dx} (e^x + e^{-x}) - (e^x + e^{-x}) \frac{d}{dx} (2) }{(2)^2}
\\
\\
\frac{d}{dx} (\cos hx) =& \frac{2 [e^x + (-e^{-x})]}{4}
\\
\\
\frac{d}{dx} (\cos hx) =& \frac{e^x - e^{-x}}{2}
\end{aligned}
\end{equation}
$
We know that $\displaystyle \sin h(x) = \frac{e^x - e^{-x}}{2}$, so
$\displaystyle \frac{d}{dx} (\cos hx) = \sin hx$
b.) $\tan hx$
$
\begin{equation}
\begin{aligned}
\tan hx =& \frac{\sin hx}{\cos hx}
\\
\\
\frac{d}{dx} \tan hx =& \frac{d}{dx} \left( \frac{\sin hx}{\cos hx} \right)
\\
\\
\frac{d}{dx} \tan hx =& \frac{\displaystyle (\cos hx) \frac{d}{dx} (\sin hx) - (\sin hx) \frac{d}{dx} (\cos hx) }{(\cos hx)^2}
\\
\\
\frac{d}{dx} \tan hx =& \frac{(\cos hx) (\cos hx) - (\sin hx)(\sin hx)}{\cos h^2 x}
\\
\\
\frac{d}{dx} \tan hx =& \frac{\cos h^2 x - \sin h^2 x}{\cos h^2 x}
\end{aligned}
\end{equation}
$
We know that $\cos h^2 x - \sin h^2 x = 1$, so
$
\begin{equation}
\begin{aligned}
\frac{d}{dx} \tan hx =& \frac{1}{\cos h^2 x}
\\
\\
\frac{d}{dx} \tan hx =& \sec h^2 x
\end{aligned}
\end{equation}
$
c.) $\csc hx$
$
\begin{equation}
\begin{aligned}
\csc hx =& \frac{1}{\sin hx}
\\
\\
\csc hx =& (\sin hx)^{-1}
\\
\\
\frac{d}{dx} (\csc hx) =& \frac{d}{dx} (\sin hx)^{-1}
\\
\\
\frac{d}{dx} (\csc hx) =& -(\sin hx)^{-2} \frac{d}{dx} (\sin hx)
\\
\\
\frac{d}{dx} (\csc hx) =& - (\sin hx)^{-2} (\cos hx)
\\
\\
\frac{d}{dx} (\csc hx) =& \frac{-1}{\sin h^2 x} \cdot \cos hx
\\
\\
\frac{d}{dx} (\csc hx) =& \frac{- \cos hx}{\sin hx} \cdot \frac{1}{\sin hx}
\\
\\
\frac{d}{dx} (\csc hx) =& - \cot hx \csc hx
\end{aligned}
\end{equation}
$
d.) $\sec hx$
$
\begin{equation}
\begin{aligned}
\sec hx =& \frac{1}{\cos hx}
\\
\\
\sec hx =& (\cos hx)^{-1}
\\
\\
\frac{d}{dx} (\sec hx) =& \frac{d}{dx} (\cos hx)^{-1}
\\
\\
\frac{d}{dx} (\sec hx) =& - (\cos hx)^{-2} \frac{d}{dx} (\cos hx)
\\
\\
\frac{d}{dx} (\sec hx) =& - (\cos hx)^{-2} (\sin hx)
\\
\\
\frac{d}{dx} (\sec hx) =& \frac{-1}{\cos h^2 x} \cdot \sin hx
\\
\\
\frac{d}{dx} (\sec hx) =& \frac{- \sin hx}{\cos hx} \cdot \frac{1}{\cos hx}
\\
\\
\frac{d}{dx} (\sec hx) =& - \tan hx \sec hx
\end{aligned}
\end{equation}
$
e.) $\cot hx$
$
\begin{equation}
\begin{aligned}
\cot hx =& \frac{\csc hx}{\sin hx}
\\
\\
\frac{d}{dx} (\cot hx) =& \frac{d}{dx} \left( \frac{\cos hx}{\sin hx} \right)
\\
\\
\frac{d}{dx} (\cot hx) =& \frac{\displaystyle (\sin hx) \frac{d}{dx} (\cos hx) - (\cos hx) \frac{d}{dx} (\sin hx)}{(\sin hx)^2}
\\
\\
\frac{d}{dx} (\cot hx) =& \frac{(\sin hx)(\sin hx) - (\cos hx)(\cos hx)}{\sin h^2x}
\\
\\
\frac{d}{dx} (\cot hx) =& \frac{\sin h^2 x - \cos h^2 x}{\sin h^2 x}
\\
\\
\frac{d}{dx} (\cot hx) =& \frac{- (\cos h^2 x - \sin h^2 x)}{\sin h^2 x}
\end{aligned}
\end{equation}
$
We know that $\cos h^2 x - \sin h^2 x = 1$
$
\begin{equation}
\begin{aligned}
\frac{d}{dx} (\cot hx) =& \frac{-1}{\sin h^2 x}
\\
\\
\frac{d}{dx} (\cot hx) =& - \csc h^2 x
\end{aligned}
\end{equation}
$
Sunday, October 28, 2012
Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 24
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment