Monday, October 29, 2012

Calculus: Early Transcendentals, Chapter 6, 6.3, Section 6.3, Problem 21

The shell has the radius x, the cricumference is 2pi*x and the height is x*e^(-x) , hence, the volume can be evaluated, using the method of cylindrical shells, such that:
V = 2pi*int_(x_1)^(x_2) x*x*e^(-x) dx
You need to find the next endpoint, using the equation x*e^(-x) = 0 => x = 0
V = 2pi*int_0^2 x^2*e^(-x) dx
You need to use integration by parts to evaluate the volume, such that:
int udv = uv - int vdu
u = x^2 => du = 2xdx
dv = e^(-x) => v = -e^(-x)
int_0^2 x^2*e^(-x) dx = -x^2*e^(-x)|_0^2 + 2int_0^2 x*e^(-x)dx
You need to use integration by parts to evaluate the integral int_0^2 x*e^(-x)dx.
u = x => du = dx
dv = e^(-x) => v = -e^(-x)
int_0^2 x*e^(-x)dx = -x*e^(-x)|_0^2 + int_0^2 e^(-x) dx
int_0^2 x*e^(-x)dx = -x*e^(-x)|_0^2 - e^(-x)|_0^2
int_0^2 x*e^(-x)dx = -2*e^(-2) - e^(-2) +0*e^(0)+ e^(0)
int_0^2 x*e^(-x)dx = -2/(e^2) - 1/(e^2) + 1
int_0^2 x*e^(-x)dx = -3/(e^2)+ 1
int_0^2 x^2*e^(-x) dx = -x^2*e^(-x)|_0^2 + 2(-3/(e^2)+ 1)
int_0^2 x^2*e^(-x) dx = -2^2*e^(-2) - 6/(e^2) + 2
int_0^2 x^2*e^(-x) dx = -4/(e^2) -6/(e^2) + 2
int_0^2 x^2*e^(-x) dx = -10/(e^2) + 2
V = 2pi*(-10/(e^2) + 2)
Hence, evaluating the volume, using the method of cylindrical shells, yields V = 2pi*(-10/(e^2) + 2).

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...