Friday, April 25, 2014

Calculus: Early Transcendentals, Chapter 4, Review, Section Review, Problem 13

lim_(x->1^+)(x/(x-1)-1/ln(x))
=lim_(x->1^+)(xln(x)-1(x-1))/((x-1)ln(x))
=lim_(x->1^+)(xln(x)-x+1)/((x-1)ln(x))
Apply L'Hospital's rule, Test L'Hospital condition :0/0
=lim_(x->1^+)((xln(x)-x+1)')/(((x-1)ln(x))')
=lim_(x->1^+)(x(1/x)+ln(x)-1)/((x-1)(1/x)+ln(x))
=lim_(x->1^+)ln(x)/((x-1)/x+ln(x))
=lim_(x->1^+)(xln(x))/(x-1+xln(x))
Again apply L'Hospital's rule, Test L'Hospital condition:0/0
=lim_(x->1^+)((xln(x))')/((x-1+xln(x))')
=lim_(x->1^+)(x(1/x)+ln(x))/(1+x(1/x)+ln(x))
=lim_(x->1^+)(1+ln(x))/(2+ln(x))
Now plug in the value and simplify,
=(1+ln(1))/(2+ln(1))
=1/2

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...