Thursday, April 24, 2014

College Algebra, Chapter 7, Review Exercises, Section Review Exercises, Problem 20

Find the complete solution of the system
$
\left\{
\begin{equation}
\begin{aligned}

x - y - 2z + 3w =& 0
\\
y - z + w =& 1
\\
3x - 2y - 7z + 10w =& 2

\end{aligned}
\end{equation}
\right.
$
using Gauss-Jordan Elimination.

We transform the system into reduced row-echelon form

$\displaystyle \left[
\begin{array}{ccccc}
1 & -1 & -2 & 3 & 0 \\
0 & 1 & -1 & 1 & 1 \\
3 & -2 & -7 & 10 & 2
\end{array}
\right]$

$R_3 - 3 R_1 \to R_3$

$\displaystyle \left[
\begin{array}{ccccc}
1 & -1 & -2 & 3 & 0 \\
0 & 1 & -1 & 1 & 1 \\
0 & 1 & -1 & 1 & 2
\end{array}
\right]$

$R_3 - R_2 \to R_3$

$\displaystyle \left[
\begin{array}{ccccc}
1 & -1 & -2 & 3 & 0 \\
0 & 1 & -1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}
\right]$

$R_2 - R_3 \to R_2$

$\displaystyle \left[
\begin{array}{ccccc}
1 & -1 & -2 & 3 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}
\right]$

$R_1 + R_2 \to R_1$

$\displaystyle \left[
\begin{array}{ccccc}
1 & 0 & -3 & 4 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}
\right]$


This is in reduced row echelon form. If we translate the last row back into equation, we get $0x + 0y + 0z + 0w = 1$, or $0 = 1$, which is false. This that the system has no solution or it is inconsistent.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...