Friday, April 18, 2014

int sqrt(4+x^2) dx Find the indefinite integral

 
Given to solve,
int sqrt(4+x^2) dx
using the Trig Substitutions we can solve these type of integrals easily and the solution is as follows
 
for sqrt(a+bx^2) we can take x= sqrt(a/b) tan(u)
so ,For
int sqrt(4+x^2) dx
the x= sqrt(4/1)tan(u)= 2tan(u)
=> dx= 2sec^(2) (u) du
so,
int sqrt(4+x^2) dx
= int sqrt(4+(2tan(u))^2) (2sec^(2) (u) du)
= int sqrt(4+4(tan(u))^2) (2sec^(2) (u) du)
=int sqrt(4(1+(tan(u))^2)) (2sec^(2) (u) du)
= int 2sqrt(1+tan^2(u))(2sec^(2) (u) du)
= int 2sec(u)(2sec^(2) (u) du)
= int 4sec^(3) (u) du
= 4int sec^(3) (u) du
by applying the Integral Reduction
int sec^(n) (x) dx
= (sec^(n-1) (x) sin(x))/(n-1) + ((n-2)/(n-1)) int sec^(n-2) (x) dx
so ,
4int sec^(3) (u) du
= 4[(sec^(3-1) (u) sin(u))/(3-1) + ((3-2)/(3-1)) int sec^(3-2) (u)du]
= 4[(sec^(2) (u) sin(u))/(2) + ((1)/(2)) int sec (u)du]
=4[(sec^(2) (u) sin(u))/(2) + (1/2) (ln(tan(u)+sec(u)))]
but x= 2tan(u)
=> x/2 = tan(u)
u = tan^(-1) (x/2)
so,
4[(sec^(2) (u) sin(u))/(2) + (1/2) (ln(tan(u)+sec(u)))]
=4[(sec^(2) ( tan^(-1) (x/2)) sin( tan^(-1) (x/2)))/(2) + (1/2) (ln(tan( tan^(-1) (x/2))+sec( tan^(-1) (x/2))))]
=4[(sec^(2) ( tan^(-1) (x/2)) sin( tan^(-1) (x/2)))/(2) + (1/2) (ln((x/2))+sec( tan^(-1) (x/2)))] +c
 
 
 
 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...