Saturday, April 12, 2014

int_0^(pi/2) xsin(2x) dx Use integration tables to evaluate the definite integral.

To evaluate the integral problem: int_0^(pi/2) xsin(2x) dx ,we may first  solve for its indefinite integral. Indefinite integral are written in the form of int f(x) dx = F(x) +C
 where: f(x) as the integrand
           F(x) as the anti-derivative function 
           C  as the arbitrary constant known as constant of integration
We follow a formula from basic integration table to determine the indefinite integral function F(x) . For the integrals with logarithm, the problem resembles the formula:
int x sin(ax) dx= -(xcos(ax))/a+sin(ax)/a^2 +C .
By comparing x sin(ax) with xsin(2x) , we determine that  a= 2 .
 Plug-in a=2 to the integral formula, we get:
int_0^(pi/2) xsin(2x) dx=-(xcos((2)x))/(2)+sin((2)x)/(2)^2|_0^(pi/2)
=-(xcos(2x))/2+sin(2x)/4|_0^(pi/2)
After solving the indefinite integral from, we may apply definite integral formula: F(x)|_a^b = F(b) - F(a) .
-(xcos(2x))/2+sin(2x)/4|_0^(pi/2) =[-((pi/2) *cos(2*(pi/2)))/2+sin(2*(pi/2))/4]-[-(0*cos(2*0))/2+sin(2*0)/4 ]
=[-((pi/2) *cos(pi ))/2+sin(pi) /4]-[-(0*cos(0))/2+sin(0)/4 ]
=[-(pi*(-1))/4+0 /4]-[-(0*1)/2+(0)/4 ]
=[pi/4+0]-[0+0]
= [pi/4] - [0]
=pi/4
 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...