Sunday, April 13, 2014

Single Variable Calculus, Chapter 4, 4.4, Section 4.4, Problem 30

Determine the $\displaystyle \lim_{x \to \infty} \sqrt{x} \sin \frac{1}{x}$



$
\begin{equation}
\begin{aligned}

\displaystyle \lim_{x \to \infty} \sqrt{x} \sin \frac{1}{x} \cdot \frac{\sqrt{x}}{\sqrt{x}} =& \lim_{x \to \infty} \frac{x}{\sqrt{x}} \sin \frac{1}{x} = \lim_{x \to \infty} \frac{1}{\sqrt{x}} x \sin \frac{1}{x}

&& \text{We can rewrite $\displaystyle \lim_{x \to \infty} x \sin \frac{1}{x}$ to $\displaystyle \lim_{x \to \infty} \frac{\displaystyle \sin \frac{1}{x}}{\displaystyle \frac{1}{x}}$}
\\
\\

=& \lim_{x \to \infty} \frac{1}{\sqrt{x}} \cdot \lim_{x \to \infty} \frac{\displaystyle \sin \frac{1}{x}}{\displaystyle \frac{1}{x}}
&&

\\
\\
=& (0)(1)
&&
\\
\\

=& 0
&&

\end{aligned}
\end{equation}
$


As $x \to \infty$, the leading term of a polynomial function will dominate the infinity, thus the other terms can be omitted.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...