Wednesday, April 16, 2014

sum_(n=1)^oo (-1)^(n+1)/(nsqrt(n)) Determine whether the series converges absolutely or conditionally, or diverges.

To determine the convergence or divergence of the series sum_(n=1)^oo (-1)^(n+1)/(nsqrt(n)) , we may apply Alternating Series Test.
In Alternating Series Test, the series sum (-1)^(n+1) a_n is convergent if:
1) a_ngt=0
2) a_n is monotone and decreasing sequence.
3) lim_(n-gtoo) a_n =0
For the series sum_(n=1)^oo (-1)^(n+1)/(nsqrt(n)) , we have:
a_n = 1/(nsqrt(n))
Apply the radical property: sqrt(x) =x^(1/2) and Law of Exponents: x^n*x^m =x^(n+m).
a_n = 1/(nsqrt(n))
      =1/(n*n^(1/2))
      =1/n^(1+1/2)
      =1/n^(3/2)
The a_n =1/n^(3/2) is a decreasing sequence.
Then, we set-up the limit as :
lim_(n-gtoo)1/n^(3/2) = 1/oo =0
By alternating series test criteria, the series sum_(n=1)^oo (-1)^(n+1)/(nsqrt(n)) converges.
The series sum_(n=1)^oo (-1)^(n+1)/(nsqrt(n)) has positive and negative elements. Thus, we must verify if the series converges absolutely or conditionally. Recall:
a) Absolute Convergence:  sum a_n  is absolutely convergent if sum|a_n|  is convergent.  
b) Conditional Convergence:  sum a_n  is conditionally convergent if sum|a_n|   is divergent and sum a_n  is convergent.  
We evaluate the sum |a_n | as :
sum_(n=1)^oo |(-1)^(n+1)/(nsqrt(n))| =sum_(n=1)^oo 1/(nsqrt(n))
                         =sum_(n=1)^oo 1/n^(3/2)
Apply the p-series test sum_(n=1)^oo 1/n^p is convergent if pgt1 and divergent if 0ltplt=1 .
The series sum_(n=1)^oo 1/n^(3/2) has p=3/2 or 1.5 which satisfies pgt1 . Thus, the sum_(n=1)^oo |(-1)^(n+1)/(nsqrt(n))| is convergent.
Conclusion:
Based on Absolute convergence criteria, the series sum_(n=1)^oo (-1)^(n+1)/(nsqrt(n)) is absolutely convergent since  sum |a_n| as sum_(n=1)^oo |(-1)^(n+1)/(nsqrt(n))| is convergent.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...