Monday, April 28, 2014

f(x)=1/(1+x)^4 Use the binomial series to find the Maclaurin series for the function.

Recall binomial series  that is convergent when |x|lt1 follows: 
(1+x)^k=sum_(n=0)^oo _(k(k-1)(k-2)...(k-n+1))/(n!)
or(1+x)^k= 1 + kx + (k(k-1))/(2!) x^2 + (k(k-1)(k-2))/(3!)x^3 +(k(k-1)(k-2)(k-3))/(4!)x^4- ...
 For the given function f(x) =1/(1+x)^4 , we may  apply Law of Exponents: 1/x^n = x^(-n) to rewrite it as:
f(x) = (1+x)^(-4)
This now resembles (1+x)^k for binomial series.  
By comparing "(1+x)^k " with "(1+x)^(-4) ", we have the corresponding values:
x=x and k = -4 .
 Plug-in the values  on the formula for binomial series, we get:
(1+x)^(-4)=sum_(n=0)^oo ((-4)(-4-1)(-4-2)...(-4-n+1))/(n!)x^n
               = 1 + (-4)x + ((-4)(-4-1))/(2!) x^2 + ((-4)(-4-1)(-4-2))/(3!)x^3 +((-4)(-4-1)(-4-2)(-4-3))/(4!) x^4- ...
= 1 + (-4)x + ((-4)(-5))/(2!) x^2 + ((-4)(-5)(-6))/(3!)x^3 +((-4)(-5)(-6)(-7))/(4!) x^4- ...
= 1 -4x + 20/(2!) x^2 -120/(3!)x^3 +840/(4!)x^4- ...
= 1- 4x +10x^2 -20x^3 +35x^4- ...
Therefore, the Maclaurin series  for  the function f(x) =1/(1+x)^4 can be expressed as:
1/(1+x)^4 =1- 4x +10x^2 -20x^3 +35x^4- ...

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...