Tuesday, August 26, 2014

Calculus of a Single Variable, Chapter 5, 5.7, Section 5.7, Problem 38

To evaluate the given integral: int 2/sqrt(-x^2+4x)dx , we may apply the basic integration property: int c*f(x)dx= c int f(x)dx .
The integral becomes:
2 int dx/sqrt(-x^2+4x)
We complete the square for the expression (-x^2+4x) .
Completing the square:
For the first step, factor out (-1): (-x^2+4x) = (-1)(x^2-4x) or -(x^2-4x)
The x^2 -4x or x^-4x+0 resembles the ax^2+bx+c where:
a=1 , b =-4 and c=0 .
To complete the square, we add and subtract (-b/(2a))^2 .
Using a=1 and b=-4 , we get:
(-b/(2a))^2 =(-(-4)/(2(1)))^2
=(4/2)^2
= 2^2
=4
Add and subtract 4 inside the (x^2-4x) :
-(x^2-4x+4 -4)
Distribute the negative sign on -4 to rewrite it as:
-(x^2-4x+4) +4
Factor the perfect square trinomial: x^2-4x+4 = (x-2)^2 .
-(x-2)^2 +4

For the original problem, we let: -x^2+4x=-(x-2)^2 +4 :
2 int dx/sqrt(-x^2+4x)=2 int dx/sqrt(-(x-2)^2+4)
It can also be rewritten as:
2 int dx/sqrt(-(x-2)^2 +2^2) =2 int dx/sqrt(2^2 -(x-2)^2)
The integral part resembles the integral formula:
int (du)/sqrt(a^2-u^2) = arcsin(u/a)+C .
Applying the formula, we get:
2 int dx/sqrt(2^2 -(x-2)^2) =2 *(arcsin (x-2)/2) +C
Then the indefinite integral :
int 2/sqrt(-x^2+4x)dx = 2arcsin((x-2)/2)+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...