Sunday, August 3, 2014

int (x^2+3)/(xsqrt(x^2-4)) dx Find the indefinite integral

Recall indefinite integral follows int f(x) dx = F(x)+C
 where:
f(x) as the integrand
F(x) as the antiderivative of f(x)
C as the constant of integration.
 
 The given problem: int (x^2+3)/(xsqrt(x^2-4)) dx has an integrand of f(x)=(x^2+3)/(xsqrt(x^2-4)) .
Apply u-substitution on f(x) dx by letting u =x^2 then du = 2x dx or dx= (du)/(2x) :
int (x^2+3)/(xsqrt(x^2-4))dx =int (u+3)/(xsqrt(u-4))*(du)/(2x)
                        =int ((u+3)du)/(2x^2sqrt(u-4))
                         =int ((u+3)du)/(2usqrt(u-4))
Apply the basic integration property: int c*f(x) dx = c int f(x) dx :
int ((u+3)du)/(2usqrt(u-4))=(1/2)int ((u+3)du)/(usqrt(u-4))
Apply the basic integration property for sum:
int (u+v) dx = int (u) dx+int (v) dx.
(1/2)int ((u+3)du)/(usqrt(u-4))=(1/2) [int (udu)/(usqrt(u-4))+int (3du)/(usqrt(u-4))]
For the integration of theint (udu)/(usqrt(u-4)) , we can cancel out the u:
int (udu)/(usqrt(u-4))=int (du)/sqrt(u-4)
Let  v= u-4 then dv =du .
Apply the Law of exponents: sqrt(x)= x^1/2 and 1/x^n= x^-n ,  we get:
int (du)/sqrt(u-4)=int (dv)/sqrt(v)
                           
                          
Apply the Power Rule for integration: int x^n dx= x^(n+1)/(n+1)+C
int v^(-1/2)dv=v^((-1)/2+1)/((-1)/2+1) +C
                  = v^(1/2)/(1/2)
                  =v^(1/2)*(2/1)
                  = 2v^(1/2)  or   2sqrt(v)
With v= u-4  then 2sqrt(v) = 2sqrt(u-4) .
The integral becomes:
int (du)/sqrt(u-4)=2sqrt(u-4).
 
For the integration of int (3du)/(usqrt(u-4)) , we basic integration property: int c*f(x) dx = c int f(x)
int (3du)/(usqrt(u-4))=3int (du)/(usqrt(u-4))
Let: v= sqrt(u-4)
Then square both sides to get v^2=u-4 then v^2+4 =u
Applying implicit differentiation on v^2=u-4 , we get: 2vdv = du .
Plug-in du =2v dv ,  u=v^2+4 and v=sqrt(u-4) , we get:
3 int (du)/(usqrt(u-4))=3int (2vdv)/((v^2+4)*v)
                    =3int (2dv)/((v^2+4))
                    =3*2int (dv)/(v^2+4)
                    =6int (dv)/(v^2+4)
The integral part resembles the basic integration for inverse tangent function:
int (dx)/(x^2+a^2) = (1/a)arctan(u/a)+C
Then,
6int (dv)/(v^2+4) =6*(1/2)arctan(v/2)+C
                 =3arctan(v/2)+C
Plug-in v =sqrt(u-4) , we get:
int (3du)/(usqrt(u-4)) =3arctan(sqrt(u-4)/2)+C
 
Combining the results, we get:
(1/2) [int (udu)/(usqrt(u-4))+int (3du)/(usqrt(u-4))] = (1/2)*[2sqrt(u-4)+3arctan(sqrt(u-4)/2)]+C
=sqrt(u-4)+3/2arctan(sqrt(u-4)/2)+C
Plug-in u = x^2 to get the final answer:
int (x^2+3)/(xsqrt(x^2-4)) dx= sqrt(x^2-4)+3/2arctan(sqrt(x^2-4)/2)+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...