Friday, August 29, 2014

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 16

Suppose that $f(x) = x^3$





a.) Estimate the values of $f'(0)$, $\displaystyle f'\left(\frac{1}{2}\right)$, $f'(1)$, $f'(2)$ and $f'(3)$
using the graph of $f$

b.) Use symmetry to deduce the values of $\displaystyle f'\left(-\frac{1}{2}\right)$, $f'(-1)$, $f(-2)$ and $f'(-3)$

c.) Use the values from parts(a) and (b) to graph $f'$

d.) Guess a formula for $f'(x)$

e.) Use the definition of a derivative to prove that your guess in part(d) is correct.



a.) Referring to the graph, $f'(0) \approx 0$, $\displaystyle f'\left(\frac{1}{2}\right) \approx 0.5$, $f'(1) \approx 4$,
$f'(2) \approx 11$ and $f'(3) \approx 25$

b.) By symmetry across the $x$-axis, it looks like the slopes are all the same or each sides of they $y$-axis
$\displaystyle f'\left(-\frac{1}{2}\right) \approx 0.5$, $f'(-1) \approx 4$, $f'(-2) \approx 11$ and $f'(-3) \approx 25$.

c.)



d.) Based from the symmetrical values of slopes across $y$-axis, we can form a formula for $f'(x)$ as $f'(x) = nx^2$; for $n > 0$
where $n$ could be any positive constant.


e.) Based from the definition of derivative,


$\quad \displaystyle f'(x) = \lim\limits_{h \to 0} \frac{f(x+h)-f(x)}{h} \qquad \text{ where } f(x) = x^3$


$
\begin{equation}
\begin{aligned}
f'(x) &= \lim\limits_{h \to 0} \frac{(x+3)^3-x^3}{h}\\
f'(x) &= \lim\limits_{h \to 0} \frac{\cancel{x^3}+3x^2+h3xh^2+h^3-\cancel{x^3}}{h}\\
f'(x) &= \lim\limits_{h \to 0} \frac{\cancel{h}(3x^2+3xh+h^2)}{\cancel{h}}\\
f'(x) &= \lim\limits_{h \to 0} (3x^2+3xh+h^2)\\
f'(x) &= 3x^2+3x(0) + (0)^2\\
f'(x) &= 3x^2
\end{aligned}
\end{equation}
$



It shows that part(d) and part(c) resembles each other.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...