Saturday, August 16, 2014

College Algebra, Chapter 2, 2.1, Section 2.1, Problem 46

Show that the triangle with vertices $A(6,-7), B(11,-3)$, and $C(2,-2)$ is a right triangle by using the converse of the Pythagorean Theorem. Find the area of the triangle.

By using distance formula,

$
\begin{equation}
\begin{aligned}
d_{AB} &= \sqrt{(-3-(-7))^2 + (11-6)^2} &&& d_{AC} &= \sqrt{(-2-(-7))^2 + (2-6)^2}\\
\\
d_{AB} &= \sqrt{4^2 + 5^2} &&& d_{AC} &= \sqrt{5^2 + (-4)^2}\\
\\
d_{AB} &= \sqrt{16+25} &&& d_{AC} &= \sqrt{25+16}\\
\\
d_{AB} &= \sqrt{41} \text{ units} &&& d_{AC} &= \sqrt{41} \text{ units}\\
\\
\\
d_{BC} &= \sqrt{(-2-(-3))^2 + (2-11)^2}\\
\\
d_{BC} &= \sqrt{1^2 + (-9)^2}\\
\\
d_{BC} &= \sqrt{1+81}\\
\\
d_{BC} &= \sqrt{82} \text{ units}
\end{aligned}
\end{equation}
$

Next, by using the converse of the Pythagorean Theorem if the sides $\sqrt{82}$, $\sqrt{41}$ and $\sqrt{41}$ forms a right triangle.

$
\begin{equation}
\begin{aligned}
(\sqrt{82})^2 &= (\sqrt{41})^2 + (\sqrt{41})^2\\
\\
82 &= 41+41\\
\\
82 &= 82
\end{aligned}
\end{equation}
$

Since both sides are equal, then the three sides form a right triangle.
Thus, the area is $\displaystyle A = \frac{1}{2} bh = \frac{1}{2} (\sqrt{41}) (\sqrt{41}) = 20.5$ square units

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...