Wednesday, January 14, 2015

Calculus of a Single Variable, Chapter 5, 5.7, Section 5.7, Problem 35

For the given integral: int 2x/(x^2+6x+13) dx , we may apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int 2x/(x^2+6x+13) dx =2 int x/(x^2+6x+13) dx
To be able to evaluate this, we apply completing the square on x^2+6x+13 .
The x^2+6x+13 resembles ax^2+bx+c where:
a= 1 and b =6 that we can plug-into (-b/(2a))^2 .
(-b/(2a))^2= (-(6)/(2*1))^2
= (-6/2)^2
= (-3)^2
=9
To complete the square, we add and subtract 9:
x^2+6x+13 +9 -9
Group them as: (x^2+6x+9)-9+13
Simplify: (x^2+6x+9)+4
Apply factoring for the perfect square trinomial: x^2+6x+9 = (x+3)^2
(x^2+6x+9)+4=(x+3)^2 + 4
Which means x^2+6x+13 =(x+3)^2 + 4 then the integral becomes:
2 int x/sqrt(x^2+6x+13) dx =2 int x/((x+3)^2 + 4) dx
For the integral part, we apply u-substitution by letting:
u = x+3 then x= u-3 and du =dx
Then,
2 int x/((x+3)^2 + 4) dx= 2 int (u-3)/(u^2 + 4) du
Apply the basic integration property: : int (u+v) dx = int (u) dx + int (v) dx .
2 int (u-3)/(u^2 + 4) du=2 [int u/(u^2 + 4) du - int 3/(u^2 + 4) du]

For the integration of int u/(u^2 + 4) du , let:
v=u^2+4 then dv =2u du or (dv)/2 = u du .
Then,
int u/(u^2 + 4) du = int ((dv)/2)/(v)
= 1/2 int (dv)/(v)
= 1/2ln|v|+C
Plug-in v= u^2+4, we get: int u/(u^2 + 4) du =1/2ln|u^2+4|+C
For the second integration: - int 3/(u^2 + 4) du , we follow the basic integration formula for inverse tangent function:
int (du)/(u^2+a^2) = 1/a arctan(u/a)+C
Then,
- int 3/(u^2 + 4) du =-3 int (du)/(u^2 + 2^2)
= -3 *1/2arctan(u/2)+C
=-3/2 arctan(u/2)+C
Combine the results, we get:
2 [int (u/(u^2 + 4) du - int 3/(u^2 + 4) du]
=2*[ 1/2ln|u^2+4|-3/2arctan(u/2)]+C
= ln|u^2+4| - 3arctan(u/2)+C
Plug-in u=x+3 to solve for the final answer:
int 2x/(x^2+6x+13) dx= ln|(x+3)^2+4| - 3arctan((x+3)/2)+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...