Wednesday, January 14, 2015

College Algebra, Chapter 7, Review Exercises, Section Review Exercises, Problem 10

Find the complete solution of the system
$
\left\{\begin{equation}
\begin{aligned}

x-y+z =& 2
\\
x+y+3z =& 6
\\
3x-y+5z =& 10

\end{aligned}
\end{equation} \right.
$
using Gaussian Elimination.

For this system we have

$\displaystyle \left[ \begin{array}{cccc}
1 & -1 & 1 & 2 \\
1 & 1 & 3 & 6 \\
3 & -1 & 5 & 10
\end{array} \right]$

$R_2 - R_1 \to R_2$

$\displaystyle \left[ \begin{array}{cccc}
1 & -1 & 1 & 2 \\
0 & 2 & 2 & 4 \\
3 & -1 & 5 & 10
\end{array} \right]$

$\displaystyle R_3 - 3 R_1 \to R_3$

$\displaystyle \left[ \begin{array}{cccc}
1 & -1 & 1 & 2 \\
0 & 2 & 2 & 4 \\
0 & 2 & 2 & 4
\end{array} \right]$

$\displaystyle \frac{1}{2} R_2$

$\displaystyle \left[ \begin{array}{cccc}
1 & -1 & 1 & 2 \\
0 & 1 & 1 & 2 \\
0 & 2 & 2 & 4
\end{array} \right]$

$R_3 - 2 R_2 \to R_3$

$\displaystyle \left[ \begin{array}{cccc}
1 & -1 & 1 & 2 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array} \right]$


The corresponding system is


$
\left\{
\begin{equation}
\begin{aligned}

x - y + z =& 2
\\
y + z =& 2

\end{aligned}
\end{equation}
\right.
$


Now we solve for the leading variables $x$ and $y$ in terms of the non leading variable $z$.


$
\begin{equation}
\begin{aligned}

x =& y - z + 2 = 2 - z - z + 2 = 4 - 2z
\\
y =& 2 - z

\end{aligned}
\end{equation}
$


To obtain the complete solution; we let $t$ represent any real number and we express $x, y$ and $z$ in terms of $t$:


$
\begin{equation}
\begin{aligned}

x =& 4 - 2t
\\
y=& 2-t
\\
z =& t

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...