Monday, January 5, 2015

College Algebra, Chapter 7, Review Exercises, Section Review Exercises, Problem 12

Find the complete solution of the system
$
\left\{
\begin{array}{cccccc}
x & & +3z & & = & -1 \\
& y & & -4w & = & 5 \\
& 2y & +z & +w & = & 0 \\
2x & +y & +5z & -4w & = & 4
\end{array}
\right.
$
using Gaussian Elimination.

For this system we have

$\displaystyle \left[
\begin{array}{ccccc}
1 & 0 & 3 & 0 & -1 \\
0 & 1 & 0 & -4 & 5 \\
0 & 2 & 1 & 1 & 0 \\
2 & 1 & 5 & -4 & 4
\end{array}
\right]$

$R_4 - 2R_1 \to R_4$

$\displaystyle \left[
\begin{array}{ccccc}
1 & 0 & 3 & 0 & -1 \\
0 & 1 & 0 & -4 & 5 \\
0 & 2 & 1 & 1 & 0 \\
0 & 1 & -1 & -4 & 6
\end{array}
\right]$

$R_3 - 2 R_2 \to R_3$

$\displaystyle \left[
\begin{array}{ccccc}
1 & 0 & 3 & 0 & -1 \\
0 & 1 & 0 & -4 & 5 \\
0 & 0 & 1 & 9 & -10 \\
0 & 1 & -1 & -4 & 6
\end{array}
\right]$

$R_4 - R_2 \to R_4$

$\displaystyle \left[
\begin{array}{ccccc}
1 & 0 & 3 & 0 & -1 \\
0 & 1 & 0 & -4 & 5 \\
0 & 0 & 1 & 9 & -10 \\
0 & 0 & -1 & 0 & 1
\end{array}
\right]$

$R_4 + R_3 \to R_4$

$\displaystyle \left[
\begin{array}{ccccc}
1 & 0 & 3 & 0 & -1 \\
0 & 1 & 0 & -4 & 5 \\
0 & 0 & 1 & 9 & -10 \\
0 & 0 & 0 & 9 & -9
\end{array}
\right]$

$\displaystyle \frac{1}{9} R_4$

$\displaystyle \left[
\begin{array}{ccccc}
1 & 0 & 3 & 0 & -1 \\
0 & 1 & 0 & -4 & 5 \\
0 & 0 & 1 & 9 & -10 \\
0 & 0 & 0 & 1 & -1
\end{array}
\right]
$


The corresponding system is


$
\left\{
\begin{array}{cccccc}
x & & +3z & & = & -1 \\
& y & & -4w & = & 5 \\
& & z & +9w & = & -10 \\
& & & w & = & -1
\end{array}
\right.
$


We now use back-substitution


$
\begin{equation}
\begin{aligned}

z + 9(-1) =& -10
&& \text{Back-substitute } w = -1
\\
z =& -10 + 9
&& \text{Subtract } 9(-1) = -9
\\
z =& -1
&&
\\
\\
y - 4 (-1) =& 5
&& \text{Back-substitute } w = -1
\\
y =& 5-4
&& \text{Subtract } -4(-1)=4
\\
y =& 1
&&
\\
\\
x + 3(-1) =& -1
&& \text{Back-substitute } z = -1
\\
x =& -1+3
&& \text{Subtract } 3(-1) = -3
\\
x =& 2
&&


\end{aligned}
\end{equation}
$


The solution is


$
\begin{equation}
\begin{aligned}

x =& 2
\\
y =& 1
\\
z =& -1
\\
w =& -1

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...