Friday, January 9, 2015

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 16

Suppose that a particle moving in a straight line has an equation of motion $\displaystyle s = t^2 - 8t + 18$,
where $s$ and $t$ are measured in meters and seconds respectively.



a.) Find the average velocity over each time interval;



$
\begin{equation}
\begin{aligned}
& (i) [3,4] && (ii) [3.5,4]\\
& (iii)[4,5] && (iv) [4,4.5]
\end{aligned}
\end{equation}
$



b.) Determine the instantaneous velocity when $t=4$.



c.) Illustrate the graph of $s$ as a function of $t$ and draw the secant lines whose slopes are the average velocities.




$\displaystyle \text{a.) } \quad \text{average velocity } = \frac{\text{displacement}}{\text{time}} = \frac{f(t_2)-f(t_1)}{t_2-t_1}$



$f(t) = t^2 - 8t +18$



$
\quad
\begin{equation}
\begin{aligned}
\\
(i) [3,4]; \text{ average velocity } &= \frac{(4^2)-8(4)+18-[(3)^2-8(3)+18]}{4-3}\\
\\
&= 16-32+18-9+24-18\\
\\
&= -1\\
\\
(ii) [3.5,4]; \text{ average velocity }&= \frac{(4)^2-8(4)+18-[(3.5)^2-8(3.5)+18]}{4-3.5}\\
\\
&= \frac{16-32+18-12.25+28-18}{0.5}\\
\\
&= \frac{-1}{2}\\
\\
(iii) [4,5]; \text{ average velocity }&= \frac{(5)^2-8(5)+18-[(4)^2-8(4)+18]}{5-4}\\
\\
&= 25-40+18-16+32-18\\
\\
&= 1
\\
(iv) [4,4.5]; \text{ average velocity }&= \frac{(4.5)^2-8(4.5)+18-[(4)^2-8(4)+18]}{4.5-4}\\
\\
&= \frac{20.25-36+18-16-32+18}{0.5}\\
\\
&= \frac{1}{2}

\end{aligned}
\end{equation}
$



$\text{b.) }$ Based from the definition,


$
\quad
\begin{equation}
\begin{aligned}
f'(a) &= \lim \limits_{h \to 0} \frac{f(a+h)-f(a)}{h}\\
s &= f(t) = t^2 - 8t +18
\end{aligned}
\end{equation}
$



$
\quad
\begin{equation}
\begin{aligned}
f'(t) & = \lim \limits_{h \to 0} \frac{(t+h)^2 - 8 (t+h) + 18 - [(t)^2-8(t) + 18]}{h}\\
f'(t) & = \lim \limits_{h \to 0} \frac{\cancel{t^2}+2th+h^2-\cancel{8t}-8h + \cancel{18} - \cancel{t^2} + \cancel{8t} - \cancel{18}}{h}\\
f'(t) & = \lim \limits_{h \to 0} \frac{\cancel{h}(2t+h-8)}{\cancel{h}}\\
f'(t) & = \lim \limits_{h \to 0} (2t+h-8)\\
f'(t) &= 2t+0-8\\
f'(t) &= 2t-8\\
\end{aligned}
\end{equation}
$



$
\quad
\text{when } t=4\\
\displaystyle
\qquad f'(t) = 2(4) - 8 = 0 \frac{m}{s}
$


$\text{c.) }$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...