Friday, January 2, 2015

Intermediate Algebra, Chapter 2, 2.1, Section 2.1, Problem 36

Solve the equation $4[2x - (3-x) + 5] = -(2 + 7x)$, and check your solution. If applicable, tell whether the equation is an identity or contradiction.


$
\begin{equation}
\begin{aligned}

4[2x - (3-x) + 5] =& -(2 + 7x)
&& \text{Given equation}
\\
4[2x - 3 + x + 5] =& -2-7x
&& \text{Distributive property}
\\
4 [3x+2] =& -2-7x
&& \text{Combine like terms}
\\
12x + 8 =& -2 - 7x
&& \text{Distributive property}
\\
12x + 7x =& -2-8
&& \text{Add $(7x-8)$ from each side}
\\
19x =& -10
&& \text{Combine like terms}
\\
\frac{19x}{19} =& \frac{-10}{19}
&& \text{Divide both sides by $19$}
\\
x =& \frac{-10}{19}
&&

\end{aligned}
\end{equation}
$


Checking:


$
\begin{equation}
\begin{aligned}

4 \left[ 2 \left( \frac{-10}{19} \right) - \left( 3 - \left( \frac{-10}{19} \right) \right) + 5 \right] =& - \left( 2 + 7 \left( \frac{-10}{19} \right) \right)
&& \text{Substitute } x = \frac{-10}{19}
\\
\\
4 \left[ 2 \left( \frac{-10}{19} \right) - \left( \frac{67}{19} \right) + 5 \right] =& - \left( 2 - \frac{70}{19} \right)
&& \text{Work inside parentheses first}
\\
\\
4 \left[ \frac{-20}{19} - \frac{67}{19} + 5 \right] =& - \left( - \frac{32}{19} \right)
&& \text{Work inside parentheses first}
\\
\\
4 \left( \frac{8}{19} \right) =& \frac{32}{19}
&& \text{Simplify}
\\
\\
\frac{32}{19} =& \frac{32}{19}
&& \text{True}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...