Sunday, February 26, 2017

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 90

Differentiate $\displaystyle g(x) = \sqrt{\frac{x^2 - 4x}{2x +1}}$

By using Quotient Rule and Chain Rule, we get

$
\begin{equation}
\begin{aligned}
g'(x) &= \frac{d}{dx} \left[ \left( \frac{x^2 - 4x}{2x + 1} \right)^{\frac{1}{2}} \right]\\
\\
&= \frac{1}{2} \cdot \left( \frac{x^2 - 4x}{2x + 1} \right)^{\frac{1}{2}- 1} \cdot \frac{d}{dx} \left( \frac{x^2 - 4x}{2x + 1} \right)\\
\\
&= \frac{1}{2} \left( \frac{x^2 - 4x}{2x + 1} \right)^{-\frac{1}{2}}
\left[ \frac{(2x +1) \cdot \frac{d}{dx}(x^2 - 4x) - (x^2 - 4x) \cdot \frac{d}{dx} (2x + 1) }{(2x + 1)^2} \right]\\
\\
&= \frac{1}{2 \left( \frac{x^2 - 4x}{2x + 1} \right)^{\frac{1}{2}}} \left[ \frac{(2x + 1)(2x - 4) - (x^2 - 4x)(2)}{(2x + 1)^2} \right]\\
\\
&= \frac{1}{2 \left( \frac{x^2 - 4x}{2x + 1} \right)^{\frac{1}{2}}} \left[ \frac{4x^2 - 8x + 2x - 4 - 2x^2 + 8x}{(2x + 1)^2} \right]\\
\\
&= \frac{1}{2 \left( \frac{x^2 - 4x}{2x + 1} \right)^{\frac{1}{2}}} \left[ \frac{2x^2 + 2x- 4}{(2x + 1)^2} \right]\\
\\
&= \frac{1}{2 \left( \frac{x^2 - 4x}{2x + 1} \right)^{\frac{1}{2}}} \left[ \frac{2(x^2 + x - 2)}{(2x + 1)^2} \right]\\
\\
&= \frac{x^2 + x - 2}{(2x + 1)^2 \left( \frac{x^2 - 4x}{2x + 1} \right)^{\frac{1}{2}}}\\
\\
&= \frac{x^2 + x - 2}{(2x +1)^{\frac{3}{2}}(x^2 - 4x)^{\frac{1}{2}} }
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...