Wednesday, February 22, 2017

College Algebra, Chapter 7, 7.4, Section 7.4, Problem 52

Solve for $x$ if the matrix $\displaystyle \left| \begin{array}{ccc}
x & 1 & 1 \\
1 & 1 & x \\
x & 1 & x
\end{array} \right| = 0$.

For this matrix we have


$
\begin{equation}
\begin{aligned}

0 =& x \left| \begin{array}{cc}
1 & x \\
1 & x
\end{array} \right| - 1 \left| \begin{array}{cc}
1 & x \\
x & x
\end{array} \right| + 1 \left| \begin{array}{cc}
1 & 1 \\
x & 1
\end{array} \right|
&& \text{Expand}
\\
\\
0 =& x (1 \cdot x - x \cdot 1) - 1 (1 \cdot x - x \cdot x) + 1 (1 \cdot 1 - 1 \cdot x)
&& \text{Simplify}
\\
\\
0 =& x(0) - (x - x^2) + 1 -x
&& \text{Distributive Property}
\\
\\
0 =& -x + x^2 + 1 - x
&& \text{Combine like terms}
\\
\\
0 =& x^2 - 2x + 1
&& \text{Factor}
\\
\\
0 =& (x - 1)^2
&& \text{Take the square root of both sides}
\\
\\
0 =& x - 1
&& \text{Add } 1
\\
\\
x =& 1
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...