Sunday, February 26, 2017

Calculus of a Single Variable, Chapter 9, 9.9, Section 9.9, Problem 10

To determine the power series centered at c, we may apply the formula for Taylor series:
f(x) = sum_(n=0)^oo (f^n(c))/(n!) (x-c)^n
or
f(x) =f(c)+f'(c)(x-c) +(f''(c))/(2!)(x-c)^2 +(f^3(c))/(3!)(x-c)^3 +(f'^4(c))/(4!)(x-c)^4 +...
To list the f^n(x) for the given function f(x)=3/(2x-1) centered at c=2 , we may apply Law of Exponent: 1/x^n = x^-n and Power rule for derivative: d/(dx) x^n= n *x^(n-1) .
f(x) =3/(2x-1)
=3(2x-1)^(-1)
Let u =2x-1 then (du)/(dx) = 2
d/(dx) c*(2x-1)^n = c *d/(dx) (2x-1)^n
= c *(n* (2x-1)^(n-1)*2
= 2cn(2x-1)^(n-1)
f'(x) =d/(dx) 3(2x-1)^(-1)
=2*3*(-1)(2x-1)^(-1-1)
=-6(2x-1)^(-2) or 2/(2x-1)^2
f^2(x) =d/(dx) -6(2x-1)^(-2)
=2*(-6)(-2)(2x-1)^(-2-1)
=24(2x-1)^(-3) or 24/(2x-1)^3
f^3(x) =d/(dx) 24(2x-1)^(-3)
=2*(24)(-3)(2x-1)^(-3-1)
=-144(2x-1)^(-4) or -144/(2x-1)^4
Plug-in x=2 for each f^n(x), we get:
f(2)=3/(2(2)-1)
=3/ 3
=1
f'(2)=-6/(2(2)-1)^2
=-6/3^2
= -2/3
f^2(2)=24/(2(2)-1)^3
=24/3^3
=8/9
f^3(2)=-144/(2(2)-1)^4
=-144/3^4
= -16/9
Plug-in the values on the formula for Taylor series, we get:
3/(2x-1) = sum_(n=0)^oo (f^n(2))/(n!) (x-2)^n
= sum_(n=0)^oo (f^n(2))/(n!) (x-2)^n
=1+(-2/3)(x-2) +(8/9)/(2!)(x-2)^2 +(-16/9)/(3!)(x-2)^3 +...
=1-2/3(x-2) +(8/9)/2(x-2)^2 +(-16/9)/6(x-2)^3 +...
=1-2/3(x-2) +4/9(x-2)^2 +8/27(x-2)^3 +...
= sum_(n=0)^oo (-(2(x-2))/3)^n
To determine the interval of convergence, we may apply geometric series test wherein the series sum_(n=0)^oo a*r^n is convergent if |r|lt1 or -1 ltrlt 1 . If |r|gt=1 then the geometric series diverges.
By comparing sum_(n=0)^oo (-(2(x-2))/3)^n with sum_(n=0)^oo a*r^n , we determine: r = -(2(x-2))/3 .
Apply the condition for convergence of geometric series: |r|lt1 .
|-(2(x-2))/3|lt1
|-1|*|(2(x-2))/3|lt1
1*|(2(x-2))/3|lt1
|(2(x-2))/3|lt1
|(2x-4)/3|lt1
-1lt(2x-4)/3lt1
Multiply each sides by 3 :
-1*3lt(2x-4)/3*3lt1*3
-3lt2x-4lt3
Add 4 on each sides:
-3+4lt2x-4+4lt3+4
1lt2xlt7
Divide each side by 2 :
1/2lt2x/2lt7/2
1/2ltxlt7/2
Thus, the power series of the function f(x) =3/(2x-1) centered at c=2 is sum_(n=0)^oo (-(2(x-2))/3)^n and has an interval of convergence: 1/2ltxlt7/2 .

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...