Saturday, February 18, 2017

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 64

Find the volume obtained by rotating the region bounded by $y = \sec x$ and $y = \cos x$ from $\displaystyle 0 \leq x \leq \frac{\pi}{3}$ about $x$-axis.



By using vertical strips, notice that if you slice the figure, you'll get a cross section of a washer with outer radius $r_o = 1 + \sec x$ and inner radius $r_i = 1 + \cos x$. So, the cross sectional area is computed by subracting the outer circle to the inner circle. A washer = $A_{\text{outer}} - A_{\text{inner}} = \pi (1 + \sec x)^2 - \pi (1 + \cos x)^2$. Thus, the volume is...


$
\begin{equation}
\begin{aligned}
V = \int^b_a A (x) dx &= \int^{\pi/3}_0 \left[ \pi (1 + \sec x)^2 - \pi (1 + \cos x)^2 \right] dx\\
\\
&= \int^{\pi/3}_0 \left( 1 + 2 \sec x + \sec ^2 x - 1 - 2 \cos x - \cos^2 x \right) dx\\
\\
&= \int^{\pi/3}_0 \left( \sec^2 x + 2 \sec x - \cos^2 x - 2 \cos x\right) dx && \text{ recall that } \cos^2x = \frac{1+ \cos(2x)}{2}\\
\\
&= \int^{\pi/3}_0 \left(\sec^2 x + 2\sec x + \left[ \frac{1}{2} + \frac{\cos(2x)}{2} \right] - 2 \cos x \right) dx\\
\\
&= \pi \left[ \tan x + 2 \ln |\sec x + \tan x| - \frac{1}{2} x - \frac{1}{2} \left( \frac{1}{2} \right) \sin (2x) - 2 \sin x\right]^{\pi/3}_0\\
\\
&= 5.95 \text{ cubic units}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...