Saturday, February 25, 2017

College Algebra, Chapter 3, 3.1, Section 3.1, Problem 58

Determine the domain of the function $\displaystyle g(x) = \frac{\sqrt{x}}{2x^2 x -1}$
The function is not defined when the radicand is a negative value and when the denominator is 0. Since,
$\displaystyle g(x) = \frac{\sqrt{x}}{2x^2 + x -1} = \frac{\sqrt{x}}{(2x-1)(x+1)}$
Then,

$
\begin{equation}
\begin{aligned}
2x^2 + x - 1 &> 0\\
\\
(2x-1)(x+1) &> 0
\end{aligned}
\end{equation}
$

We have,

$
\begin{equation}
\begin{aligned}
2x -1 &> 0 &&\text{and}& x +1 &> 0 \\
\\
x &> \frac{1}{2} &&\text{and}& x &> -1 && \text{(However, negative values are not defined in square root)}
\end{aligned}
\end{equation}
$


So, the domain is...
$\displaystyle \left[ 0, \frac{1}{2} \right)\bigcup \left( \frac{1}{2}, \infty \right)$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...