Thursday, February 2, 2017

Single Variable Calculus, Chapter 7, 7.1, Section 7.1, Problem 30

Determine the explicit function for $f^{-1}$ if $f(x) = \sqrt{x^2 + 2x}$ for $x > 0$ and use it to graph $f^{-1}$, f and the line $y = x$ on the same
If $f(x) = \sqrt{x^2 + 2x}$, then

$
\begin{equation}
\begin{aligned}
f^{-1} (x) \quad \Longrightarrow \quad x &= \sqrt{y^2 + 2y}\\
\\
x^2 &= y^2 + 2y\\
\\
\text{by completing the square}\\
\\
x^2 + 1 &= y^2 + 2y + 1\\
\\
x^2 + 1 &= (y+1)^2\\
\\
\pm \sqrt{x^2+1} &= y + 1\\
\\
y &= -1 \pm \sqrt{x^2 + 1}
\end{aligned}
\end{equation}
$

We got the two values of $y$, however, the function is defined only for $x > 0$. The domain of $f$ is $x > 0$ and its range $y > \sqrt{0^2 + 2(0)} \Longrightarrow 0$. Thus, the domain of $f^{-1}(x)$ is $x > 0$ and range $y > 0$. Thus, the domain of $f^{-1}(x)$ is $x > 0$ and range $y > 0$. If we check both $y$,
when $ x = 1$,

$
\begin{equation}
\begin{aligned}
y &= -1 + \sqrt{1^2 + 1}\\
\\
y &= 0.4142
\end{aligned}
\end{equation}
$


when $ x = 1$,

$
\begin{equation}
\begin{aligned}
y &= -1 - \sqrt{1^2 + 1}\\
\\
y &= -2.4142
\end{aligned}
\end{equation}
$

Hence, $f^{-1}(x) = -1 + \sqrt{x^2+1}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...