Saturday, November 11, 2017

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 48

Find all real solutions of the equation $\displaystyle 2(x - 4)^{\frac{7}{3}} - (x - 4)^{\frac{4}{3}} - (x - 4)^{\frac{1}{3}} = 0$


$
\begin{equation}
\begin{aligned}

2(x - 4)^{\frac{7}{3}} - (x - 4)^{\frac{4}{3}} - (x - 4)^{\frac{1}{3}} =& 0
&& \text{Given}
\\
\\
2w^7 - w^4 - w =& 0
&& \text{Let } w = (x - 4)^{\frac{1}{3}}
\\
\\
w(2w^6 - w^3 - 1) =& 0
&& \text{Factor out } w
\\
\\
w =& 0 \text{ and } 2w^6 - w^3 - 1 = 0
&& \text{Zero Product Property}
\\
\\
(x - 4)^{\frac{1}{3}} =& 0
&& \text{Substitute } w = (x - 4)^{\frac{1}{3}} \text{ in } w = 0
\\
\\
x =& 4
&& \text{Solve for } x

\end{aligned}
\end{equation}
$


To find the solution in $2w^6 - w^3 - 1 = 0$,


$
\begin{equation}
\begin{aligned}

\text{We let } z =& w^3, \text{ so}
&&
\\
\\
2w^6 - w^3 - 1 =& 0
&&
\\
\\
3z^2 - z - 1 =& 0
&& \text{Factor}
\\
\\
(z - 1)(2z + 1) =& 0
&& \text{Zero Product Property}
\\
\\
z - 1 =& 0 \text{ and } 2z + 1 = 0
&& \text{Solve for } z
\\
\\
z =& 1 \text{ and } z = \frac{-1}{2}
&& \text{Substitute } z = w^3
\\
\\
w^3 =& 1 \text{ and } w^3 = \frac{-1}{2}
&& \text{Solve for } w
\\
\\
w =& 1 \text{ and } w = \frac{-1}{\sqrt[3]{2}}
&& \text{Substitute } w = (x - 4)^{\frac{1}{3}}
\\
\\
(x - 4)^{\frac{1}{3}} =& 1 \text{ and } (x - 4)^{\frac{1}{3}} = \frac{1}{3 \sqrt{2}}
&& \text{Solve for } x
\\
\\
x =& 5 \text{ and } x = \frac{-1}{2} + 4 = \frac{7}{2}
&& \text{Simplify}
\\
\\
x =& 4, x = 5 \text{ and } x = \frac{7}{2}
&& \text{are the solutions for the equation}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...