Sunday, November 5, 2017

College Algebra, Chapter 8, 8.1, Section 8.1, Problem 50

Determine the equation of the parabola whose graph is shown below.







The equation $x^2 = 4py$ has vertex on the origin and opens upward. Also, it has focus at $(0, p)$. It shows that the focus is the $y$-intercept of the given line. Thus, by using slope intercept form, $y = mx + b$.

$\displaystyle y = \frac{1}{2} x + p$

And if the line pass through $(2, y)$ then


$
\begin{equation}
\begin{aligned}

y =& \frac{1}{2} x + p && \text{and} &&& x^2 = 4py
\\
\\
y =& \frac{1}{2} (2) + p && \text{and} &&& 2^2 = 4py
\\
\\
y =& 1 + p && \text{and} &&& 1 = py
\\
\\
\text{Thus } & && &&&
\\
\\
p =& y - 1 \qquad \text{Equation 1} && \text{and} &&& p =& \frac{1}{y} \qquad \text{Equation 2}

\end{aligned}
\end{equation}
$



By using equations 1 and 2


$
\begin{equation}
\begin{aligned}

y - 1 =& \frac{1}{y}
&&
\\
\\
y^2 - y =& 1
&& \text{Complete the square: add } \left( \frac{-1}{2} \right)^2 = \frac{1}{4}
\\
\\
y^2 - y + \frac{1}{4} =& 1 + \frac{1}{4}
&& \text{Perfect Square}
\\
\\
\left(y - \frac{1}{2} \right)^2 =& \frac{5}{4}
&& \text{Take the square root}
\\
\\
y - \frac{1}{2} =& \pm \sqrt{\frac{5}{4}}
&& \text{Add } \frac{1}{2}
\\
\\
y =& \frac{1}{2} \pm \frac{\sqrt{5}}{2}
&& \text{Choose } y > 0
\\
\\
y =& \frac{1 + \sqrt{5}}{2}
&&

\end{aligned}
\end{equation}
$


So if $\displaystyle y = \frac{1 + \sqrt{5}}{2}$, then $\displaystyle p = y - 1 = \frac{1 + \sqrt{5}}{2} - 1 = \frac{-1 + \sqrt{5}}{2}$. Therefore, the equation is $\displaystyle x^2 = 4py; x^2 = 4 \left( \frac{-1 + \sqrt{5}}{2} \right) y; x^2 = 2 \left( -1 + \sqrt{5} \right) y$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...