Sunday, November 12, 2017

Single Variable Calculus, Chapter 7, 7.1, Section 7.1, Problem 28

Find a formula for the inverse of the function $f(x) = 2x^2 - 8x \quad x \geq 2$
If $f(x) = 2x^2 - 8x$, then

$
\begin{equation}
\begin{aligned}
f^{-1}(x) \quad \Longrightarrow \quad x &= 2y^2 - 8y\\
\\
\frac{x}{2} &= y^2 - 4y\\
\\
\text{by completing the square,}\\
\\
\frac{x}{2} + 4 &= y^2 - 4y + y\\
\\
\frac{x}{2} + 4 &= (y - 2)^2\\
\\
\pm \sqrt{\frac{x}{2}+4} &= y - 2\\
\\
y &= 2 \pm \sqrt{\frac{x}{2} + 4}
\end{aligned}
\end{equation}
$

We got two values of $y$, however, the function is defined only for $x \geq 2$. The domain of $f$ is $x \geq 2$ and its range $y \geq 2(2)^2 -8(2) \quad \Longleftarrow \quad -8$. Thus the domain of $f^{-1}(x)$ is $x \geq -8$ and range $y \geq 2$. If we check both $y$,

when $x = -6$,

$
\begin{equation}
\begin{aligned}
y &= 2 + \sqrt{\frac{-6}{2} + 4}\\
\\
y &= 3
\end{aligned}
\end{equation}
$

when $x = -6$,

$
\begin{equation}
\begin{aligned}
y &= 2 - \sqrt{\frac{-6}{2} + 4}\\
\\
y &= 1
\end{aligned}
\end{equation}
$


Hence, $f^{-1}(x) = 2 + \sqrt{\frac{x}{2}+4}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...