Sunday, March 18, 2012

Beginning Algebra With Applications, Chapter 3, 3.2, Section 3.2, Problem 166

Solve $-4 [x - 2 (2x - 3)] + 1 = 2x-3$ and check.


$
\begin{equation}
\begin{aligned}

-4 [x - 2 (2x - 3)] + 1 =& 2x-3
&& \text{Given equation}
\\
\\
-4(x-4x + 6) + 1 =& 2x - 3
&& \text{Apply Distributive Property}
\\
\\
-4x + 16x - 24 + 1 =& 2x-3
&& \text{Apply Distributive Property}
\\
\\
-4x + 16x - 2x =& -3 + 24 -1
&& \text{Subtract $2x$ and subtract } (-24+1)
\\
\\
10x =& 20
&& \text{Simplify}
\\
\\
\frac{\cancel{10}x}{\cancel{10}} =& \frac{20}{10}
&& \text{Divide by } 10
\\
\\
x =& 2
&&


\end{aligned}
\end{equation}
$


Checking:


$
\begin{equation}
\begin{aligned}

-4 [2-2(2(2) - 3)] + 1 =& 2(2) - 3
&& \text{Substitute } x = 2
\\
-4(2-2) + 1 =& 4-3
&& \text{Simplify}
\\
1 =& 1
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...