Friday, March 30, 2012

Beginning Algebra With Applications, Chapter 3, 3.3, Section 3.3, Problem 140

Evaluate $\displaystyle \frac{3}{8}(16 - 8c) - 9 \geq \frac{3}{5}(10c - 15) + 7$

$
\begin{equation}
\begin{aligned}
\frac{3}{8} (16) - \frac{3}{8} (8c) - 9 &\geq \frac{3}{5}(10c) - \frac{3}{5} (15) + 7 && \text{Use the Distributive Property to remove the parenthesis}\\
\\
6 - 3c - 9 &\geq 6c - 9 + 7 && \text{Simplify}\\
\\
-3c - 6c &\geq - 9 + 7 - 6 + 9 && \text{Group terms}\\
\\
-9c &\geq 1 && \text{Combine like terms}\\
\\
\frac{-9c}{-9} &\geq \frac{1}{-9} && \text{Divide each side by -9}\\
\\
c &\leq -\frac{1}{9} && \text{Remember that if you divide or multiply numbers ,the inequality symbol reverses}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...