Thursday, March 29, 2012

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 24

Determine $Y(u) = (u^{-2} + u^{-3})(u^5 - 2u^2)$


$
\begin{equation}
\begin{aligned}

y(u) =& (u^{-2} + u^{-3})(u^5 - 2u^2)
&& \text{Expand the equation}
\\
\\
y(u) =& (u^{-2 + 5} + u^{-3 + 5} - 2u^{-2 + 2} - 2u^{-3 + 2})
&& \text{Simplify the equation}
\\
\\
y(u) =& u^3 + u^2 - 2u^0 - 2u^{-1}
&& \text{Apply Power Rule}
\\
\\
y'(u) =& \frac{d}{du} (u^3) + \frac{d}{du} (u^2) - 2 \frac{d}{du} (u^-1) - \frac{d}{du} (2)
&&
\\
\\
y'(u) =& 3u^2 + 2u - (2)(-1)(u^{-2}) - 0
&& \text{Simplify the equation}
\\
\\
y'(u) =& 3u^2 + 2u + 2u^{-2}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...