Thursday, March 22, 2012

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 12

a.) Suppose that $f(x) = \sqrt{3-5x}$, use the definition of a derivative to find $f'(x)$ using the definition of a derivative.
Using the definition of a derivative
$\displaystyle f'(x) = \lim\limits_{h \to 0} \frac{f(x+h) - f(x) }{h}$

$
\begin{equation}
\begin{aligned}
f'(x) &= \lim\limits_{h \to 0} \frac{\sqrt{3-5(x+h)}-\sqrt{3-5x}}{h}\\
\\
f'(x) &= \lim\limits_{h \to 0} \frac{\sqrt{3-5x-5h}-\sqrt{3-5x}}{h} \cdot \frac{\sqrt{3-5x-5h}+\sqrt{3-5x}}{\sqrt{3-5x-5h}+\sqrt{3-5x}}\\
\\
f'(x) &= \lim\limits_{h \to 0} \frac{3-5x-5h(3-5x)}{h\left(\sqrt{3-5x-5h}+\sqrt{3-5x} \right)}\\
\\
f'(x) &= \lim\limits_{h \to 0} \frac{\cancel{3} - \cancel{5x} - 5h - \cancel{3} + \cancel{5x}}{h\left(\sqrt{3-5x-5h}+\sqrt{3-5x} \right)}\\
\\
f'(x) &= \lim\limits_{h \to 0} \frac{-5\cancel{h}}{\cancel{h}\left(\sqrt{3-5x-5h}+\sqrt{3-5x} \right)}\\
\\
f'(x) &= \lim\limits_{h \to 0} \left( \frac{-5}{\sqrt{3-5x-5h}+\sqrt{3-5x}} \right) = \frac{-5}{\sqrt{3-5x-5(0)}+\sqrt{3-5x}} = \frac{-5}{\sqrt{3-5x}+\sqrt{3-5x}}\\
\\
f'(x) &= \frac{-5}{2 \sqrt{3-5x}}
\end{aligned}
\end{equation}
$

b.) Determine the domains of $f$ and $f'$.
The function $f$ involves a root function that can not have a negative value. So,

$
\begin{equation}
\begin{aligned}
3-5x & \leq 0 \\
3 & \leq 5x\\
x & \leq \frac{3}{5}
\end{aligned}
\end{equation}
$

Therefore, the domain of $f$ is $\displaystyle \left( -\inf, \frac{3}{5} \right]$. The function $f'$ is a rational function which has a root function on the denominator, so the value should bot be equal to zero and does not have a negative value. Therefore, the domain of $f'$ is $\displaystyle \left( -\infty, \frac{3}{5} \right)$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...