Saturday, March 31, 2012

Calculus and Its Applications, Chapter 1, 1.6, Section 1.6, Problem 48

Differentiate $\displaystyle f(t) = \frac{3t^2 + 2t - 1}{-t^2 + 4t +1}$
By applying Long Division, we have



Thus,
$\displaystyle f(t) = -3 + \frac{14t + 2}{-t^2 + 4t + 1}$
Then, by taking the derivative using Quotient Rule, we obtain

$
\begin{equation}
\begin{aligned}
f'(t) &= \frac{d}{dt} (-3) + \frac{d}{dt} \left( \frac{14t + 2}{-t^2 + 4t + 1} \right)\\
\\
f'(t) &= 0 + \frac{(-t^2 + 4t + 1) \cdot \frac{d}{dt} (14t + 2) - (14t + 2) \cdot \frac{d}{dt}(-t^2 + 4t + 1) }{(-t^2 + 4t + 1)^2}\\
\\
f'(t) &= \frac{(-t^2 + 4t + 1)(14) - (14t + 2)( -2t + 4)}{(-t^2 + 4t + 1)^2}\\
\\
f'(t) &= \frac{-14t^2 + 56t + 14 - \left[ -28t^2 + 56t - 4t + 8 \right]}{(-t^2 +4t + )^2}\\
\\
&= \frac{-14t^2 + 56t + 14 + 28t^2 - 56t + 4t - 8 }{(-t^2 + 4t + 1)^2}\
\\
&= \frac{14t^2 + 4t + 6}{(-t^2 + 4t + 1)^2} \quad \text{ or } \quad \frac{2(7t^2 + 2t + 3)}{\left[ (-1) (t^2 - 4t - 1)\right]^2}\\
\\
&= \frac{2(7t^2 + 2t + 3)}{(-1)^2(t^2 - 4t - 1)^2}\\
\\
&= \frac{2(7t^2 + 2t + 3)}{t^2 - 4t - 1}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...