Tuesday, March 20, 2012

int_0^(pi/2) 1/(1+sin(theta)+cos(theta)) d theta Find or evaluate the integral

To evaluate the integral problem: int_0^(pi/2) 1/(1+sin(theta)+cos(theta)) d theta , we may apply Weierstrass substitution or tangent half-angle substitution .
This helps to determine the indefinite integral of a rational function in terms of sine and cosine. We let:
u = tan(theta/2)
sin(theta) = (2u)/(1+u^2)
cos(theta) =(1-u^2)/(1+u^2)
d theta=(2 du)/(1+u^2)
Plug-in the values to express the integral problem in terms variable "u'.
int 1/(1+sin(theta)+cos(theta)) d theta=int 1/(1+(2u)/(1+u^2)+(1-u^2)/(1+u^2))*(2 du)/(1+u^2)
=int 1/(((1+u^2)/(1+u^2)+(2u)/(1+u^2)+(1-u^2)/(1+u^2)))*(2 du)/(1+u^2)
=int 1/(((1+u^2+ 2u +1-u^2)/(1+u^2)))*(2 du)/(1+u^2)
=int 1/(((2 +2u)/(1+u^2)))*(2 du)/(1+u^2)
=int 1 *(1+u^2)/ (2 +2u)*(2 du)/(1+u^2)
=int (2 du)/ (2 +2u)
=int (2 du)/ (2(1 +u))
=int (du)/(1+u)
 
From the table of indefinite integration table, we follow the integral formula for rational function as:
int (dx)/(ax+b)=1/aln(ax+b)
By comparing "ax+b " with "1+u or 1u +1 ", the corresponding values are: a=1 and b=1 . Then, the integral becomes:
int (du)/(1+u)=1/1ln(1u+1)
                     =ln(u+1)
Plug-in u =tan(x/2) on ln(u+1) , we  get:
int_0^(pi/2) 1/(1+sin(theta)+cos(theta)) d theta=ln(tan(x/2)+1)|_0^(pi/2)
Apply the definite integral formula: F(x)|_a^b= F(b)-F(a) .
ln(tan(x/2)+1)|_0^(pi/2)=ln(tan(((pi/2))/2)+1)-ln(tan(0/2)+1)
                                   =ln(tan(pi/4)+1)-ln(tan(0)+1)
                                   =ln(1+1)-ln(0+1)
                                   =ln(2)-ln(1)
                                   = ln(2/1)
                                   =ln(2) or 0.693
https://en.wikipedia.org/wiki/Tangent_half-angle_substitution

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...