Monday, March 19, 2012

x=e^(-t)cost , y=e^(-t)sint , 0

The formula of arc length of a parametric equation on the interval alt=tlt=b is:
L = int_a^b sqrt((dx/dt)^2+(dy/dt)^2) dt
The given parametric equation is:
x = e^(-t)cost
y=e^(-t)sint
The derivative of x and y are with respect to t are:
dx/dt = e^(-t) * (cost)' + (e^(-t))'*cost
dx/dt = e^(-t)*(-sint) + e^(-t)*(-1)cost
dx/dt=-e^(-t)sint-e^(-t)cost
dy/dt = e^(-t)*(sint)' + (e^(-t))'*sint
dy/dt = e^(-t)cost + e^(-t)*(-1)sint
dy/dt=e^(-t)cost - e^(-t)sint
Plugging them to the formula, the integral needed to compute the arc length of the given parametric equation on the interval 0lt=tlt=pi/2 is:
L= int_0^(pi/2) sqrt( (-e^(-t)sint-e^(-t)cost)^2 + (e^(-t)cost - e^(-t)sint)^2) dt
The simplified form of the integral is:
L= int_0^(pi/2) sqrt( (-e^(-t)(sint + cost))^2+ (e^(-t)(cost-sint))^2)dt
L=int_0^(pi/2)sqrt( e^(-2t)(sint+cost)^2 + e^(-2t)(cost-sint)^2) dt
L=int_0^(pi/2) sqrt(e^(-2t)((sint+cost)^2 + (cost-sint)^2) )dt
L= int_0^(pi/2) e^(-t) sqrt((sint+cost)^2+(cost-sint)^2)dt
L=int_0^(pi/2) e^(-t) sqrt(sin^2t +2sintcost +cos^2t+cos^2t -2sintcost +sin^2t)dt
L= int_0^(pi/2) e^(-t) sqrt(2sin^2t + 2cos^2t)
L= int_0^(pi/2) e^(-t)sqrt(2(sin^2t+cos^2t))
L= int_0^(pi/2) e^(-t) sqrt(2*(1))dt
L= int_0^(pi/2) e^(-t) sqrt(2)dt
L= sqrt2 int_0^(pi/2) e^(-t)dt
L= -sqrt2 e^(-t) |_0^(pi/2)
L =-sqrt2 (e^(-pi/2) - e^0)
L=-sqrt2(e^(-pi/2)-1)
L=sqrt2 - sqrt2e^(-pi/2)
Therefore, the arc length of the curve is  sqrt2 - sqrt2e^(-pi/2) units.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...