Friday, March 30, 2012

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 23

a.) Suppose that $\displaystyle F(x) = \frac{5x}{ 1 + x^2}$, find $F'(2)$ and use it to find an equation of the tangent line to the curve $\displaystyle y = \frac{5x}{1 + x^2}$ at the point $(2,2)$

Using the definition of the derivative of a function $F$ at a number $a$, denoted by $F'(a)$, is

$\qquad \displaystyle \qquad F'(a) = \lim_{h \to 0} \frac{F(a + h) - F(a)}{h}$

We have,


$
\begin{equation}
\begin{aligned}

\qquad F'(a) =& \lim \limits_{h \to 0} \frac{\displaystyle \frac{5(a + h)}{1 + (a + h)^2} - \frac{5a}{1+ a^2}}{h}
&& \text{Substitute $F'(a + h)$ and $F(a)$}\\
\\
\qquad F'(a) =& \lim \limits_{h \to 0} \frac{(5a + 5h)(1 + a^2)- 5 a[1 + (a + h)^2]}{(h)(1 + a^2)[1 + (a + h)^2]}
&& \text{Get the LCD of the numerator}\\
\\
\qquad F'(a) =& \lim \limits_{h \to 0} \frac{5a + 5a^3 + 5h + 5a^2 h - 5a (a^2 + 2ah + h^2 + 1)}{(h)(1 + a^2)[1 + (a + h)^2]}
&& \text{Expand the equation}
\\
\qquad F'(a) =& \lim \limits_{h \to 0} \frac{\cancel{5a} + \cancel{5a^3} + 5h + 5a^2 h - \cancel{5a} - \cancel{5a^3} - 10a^2 h - 5ah^2}{(h)(1 + a^2)[1 + (a + h)^2]}
&& \text{Combine like terms and simplify}\\
\\
\qquad F'(a) =& \lim \limits_{h \to 0} \frac{5h - 5a^2 h - 5ah^2}{(h)(1 + a^2)[1 + (a+ h)^2]}
&& \text{Factor the numerator}\\
\\
\qquad F'(a) =& \lim \limits_{h \to 0} \frac{\cancel{h}(5 - 5a^2 - 5ah)}{\cancel{(h)}(1 + a^2)[1 + (a + h)^2]}
&& \text{Cancel out like terms}\\
\\
\qquad F'(a) =& \lim \limits_{h \to 0} \frac{5 - 5a^2 - 5ah}{(1 + a^2)[1 + (a + h)^2]} = \frac{5 - 5a^2 - 5a(0)}{1 + (a + 0)^2}
&& \text{Evaluate the limit}\\
\\
\qquad F'(a) =& \frac{5 - 5a^2}{(1 + a^2)^2}
&& \text{Substitute the value of $(a)$}\\
\\
\qquad F'(2) =& \frac{5 - 5(2)^2}{(1 + (2)^2)^2}
&& \text{Simplify}

\end{aligned}
\end{equation}
$



$\qquad \fbox{$F'(2) \displaystyle = \frac{-15}{25} = \frac{-3}{5}$} \qquad$
Slope of the tangent line at $(2,2)$

Using Point Slope Form where the tangent line $y = F(x)$ at $(a, F(a))$


$
\begin{equation}
\begin{aligned}

y - F(a) =& F'(a) (x -a)\\
&& \\
\\

y =& \frac{-3x + 6}{5} + 2
&& \text{Substitute the value of $a, F(a)$ and $F'(a)$}\\
\\

y =& \frac{-3x + 6 + 10}{5}
&& \text{Combine like terms}


\end{aligned}
\end{equation}
$


$\qquad \fbox{$ y = \displaystyle \frac{ -3x + 16}{5}$} \qquad$ Equation of the tangent line at $(2,2)$

b.) Draw a graph of the curve and the tangent line on the same screen.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...