Thursday, March 29, 2012

Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 61

(a) Suppose you have $g(x) = 2x+1$ and $h(x) = 4x^2 + 4x +7$, find a function $f$ such that $f o g = h$.

In order to obtain the equation of $f(x)$, we must consider first that the highest degree of the function $h$ is 2 and the highest degree of $g$ is 1, then the function $f(x$) must have the highest degree of 2 also.

Let $f(x) = Ax^2 + Bx + C$ where $A, B, C$ are constant


$
\begin{equation}
\begin{aligned}

f \circ g(x) &= f(g(x))\\
f(2x + 1) &= Ax^2 + Bx + C\\
f(2x + 1) &= A(2x + 1)^2 + B(2x + 1)+ C\\
f \circ g & = 4Ax^2 + 4Ax + A + 2Bx + B + C\\

\end{aligned}
\end{equation}
$


To obtain $f \circ g = h$

$f \circ g = h$


$
\begin{equation}
\begin{aligned}

4Ax^2 + 4Ax + A + 2Bx + B + C &= 4x^2 + 4x + 7\\

\end{aligned}
\end{equation}
$


To solve the value of $A$


$
\begin{equation}
\begin{aligned}

\frac{\cancel{4}A\cancel{x^2}}{\cancel{4}\cancel{x^2}} &= \frac{\cancel{4x^2}}{\cancel{4x^2}}\\
A &= 1

\end{aligned}
\end{equation}
$


To solve the value of $B$


$
\begin{equation}
\begin{aligned}

4Ax + 2Bx &= 4x\\
4(1)x + 2Bx &= 4x\\
4x + 2Bx &= 4x\\
2Bx &= 4x - 4x\\
\frac{\cancel{2}B\cancel{x}}{\cancel{2}\cancel{x}} &= \frac{0}{2x}\\
B &= 0

\end{aligned}
\end{equation}
$


To solve the value of $C$


$
\begin{equation}
\begin{aligned}

A + B + C &= 7\\
1 + 0 + C &= 7\\
C &= 7 - 1\\
C &= 6

\end{aligned}
\end{equation}
$


Substitute values of $A, B$ & $C$ to the function $f(x) = Ax^2 + Bx + C$

$f(x) = (1)(x^2) + (0)(x) + 6$

$\fbox{$f(x) = x^2 + 6$}$

(b) Assume that $f(x) = 3x + 5$ and $h(x) = 3x^2 + 3x + 2$, find a function $g$ such that $f \circ g = h$
In order to obtain function $g(x)$, we must know that the highest degree of $h$ is 2 and the higest degree of $f$ is 1, then $g$ must have the highest degree which is 2.
Let $g(x) = Ax^2 + Bx + C$ where $A, B,$ and $C$ are constant then


$
\begin{equation}
\begin{aligned}

f \circ g (x) =& f(g(x))\\
f(Ax^2 + Bx + C) =& 3x + 5\\
f \circ g =& 3Ax^2 + 3Bx + 3C + 5\\
\text { To obtain } f \circ g =& h\\
3Ax^2 + 3Bx + 3C + 5 =& 3x^2 + 3x + 2\\
\end{aligned}
\end{equation}
$


Solving for the value of $A, B, C$


$
\begin{equation}
\begin{aligned}

\frac{\cancel{3} A \cancel{x^2}}{\cancel{3}\cancel{x^2}} =& \frac{\cancel{3x^2}}{\cancel{3x^2}}\\
A =& 1\\
\\
\frac{\cancel{3}B \cancel{x}}{\cancel{3x}} =& \frac{\cancel{3x}}{\cancel{3x}}\\
B =& 1\\
\\
3C + 5 =& 2\\
3C =& 2-5\\
\frac{3C}{3} =& \frac{-3}{3}\\
C =& -1
\end{aligned}
\end{equation}
$


Substitute the value $A, B, C$ to function $g(x) = Ax^2 + Bx + C$

$g(x) = (1)(x^2) + (1)(x) + (-1)$
$\fbox{$g(x) = x^2 + x - 1$}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...