Friday, March 23, 2012

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 50

Determine the $\displaystyle \lim_{x \to 0} \left( \cot x - \frac{1}{x}\right)$. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.



$
\begin{equation}
\begin{aligned}
\lim_{x \to 0} \left( \cot x - \frac{1}{x}\right) &= \lim_{x \to 0} \left( \frac{\cos x}{\sin x} - \frac{1}{x} \right)\\
\\
&= \lim_{x \to 0} \frac{x \cos x - \sin x}{x \sin x}\\
\\
&= \frac{0(\cos 0) - \sin 0}{0 (\sin 0)}\\
\\
&= \frac{0}{0}
\end{aligned}
\end{equation}
$



Thus, by applying L'Hospitals Rule...

$
\begin{equation}
\begin{aligned}
\lim_{x \to 0} \frac{x \cos x - \sin x}{x \sin x} &= \lim_{x \to 0} \frac{[x - (-\sin x) + \cos x] - \cos x}{x (\cos x) + \sin x}\\
\\
&= \lim_{x \to 0} \left[ \frac{-x \sin x}{x \cos x + \sin x} \right]
\end{aligned}
\end{equation}
$


If we evaluate the limit, we still get indeterminate form, so we must apply L'Hospitals Rule once more.. Hence,

$
\begin{equation}
\begin{aligned}
\lim_{x \to 0} \left[ \frac{-x \sin x}{x \cos x + \sin x} \right] &= \lim_{x \to 0} \frac{[- x \cos x - \sin x]}{[x (-\sin x) + \cos x] + \sin x}\\
\\
&= \frac{-0(\cos 0) - \sin(0)}{0(-\sin(0)) + \cos 0 + \sin 0}\\
\\
&= \frac{0}{1} = 0
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...